Controlling airborne cues to study small animal navigation

[1]  A. Gomez-Marin,et al.  Active sampling and decision making in Drosophila chemotaxis , 2011, Nature communications.

[2]  Bill S Hansson,et al.  A unified nomenclature system for the insect olfactory coreceptor. , 2011, Chemical senses.

[3]  Cori Bargmann,et al.  High-content behavioral analysis of Caenorhabditis elegans in precise spatiotemporal chemical environments , 2011, Nature Methods.

[4]  Rex A. Kerr,et al.  High-Throughput Behavioral Analysis in C. elegans , 2011, Nature Methods.

[5]  Aravinthan D. T. Samuel,et al.  Navigational Decision Making in Drosophila Thermotaxis , 2010, The Journal of Neuroscience.

[6]  Brian J. Duistermars,et al.  Mechanisms of Odor-Tracking: Multiple Sensors for Enhanced Perception and Behavior , 2010, Front. Cell. Neurosci..

[7]  Nicolas Y. Masse,et al.  Olfactory Information Processing in Drosophila , 2009, Current Biology.

[8]  John R. Carlson,et al.  Translation of Sensory Input into Behavioral Output via an Olfactory System , 2008, Neuron.

[9]  S. M. Coulthard,et al.  Artificial dirt: microfluidic substrates for nematode neurobiology and behavior. , 2008, Journal of Neurophysiology.

[10]  Daniel Ramot,et al.  The Parallel Worm Tracker: A Platform for Measuring Average Speed and Drug-Induced Paralysis in Nematodes , 2008, PloS one.

[11]  S. Zipursky,et al.  Hybrid Neurons in a MicroRNA Mutant Are Putative Evolutionary Intermediates in Insect CO2 Sensory Systems , 2008, Science.

[12]  L. Vosshall,et al.  Bilateral olfactory sensory input enhances chemotaxis behavior , 2008, Nature Neuroscience.

[13]  Sreekanth H. Chalasani,et al.  Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans , 2007, Nature.

[14]  Cori Bargmann,et al.  Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans , 2007, Nature Methods.

[15]  L. Vosshall,et al.  Molecular architecture of smell and taste in Drosophila. , 2007, Annual review of neuroscience.

[16]  John R. Carlson,et al.  The molecular basis of CO2 reception in Drosophila , 2007, Proceedings of the National Academy of Sciences.

[17]  Leslie B. Vosshall,et al.  Two chemosensory receptors together mediate carbon dioxide detection in Drosophila , 2007, Nature.

[18]  Manfred Forstreuter,et al.  Behavioral responses of Drosophila to biogenic levels of carbon dioxide depend on life-stage, sex and olfactory context , 2006, Journal of Experimental Biology.

[19]  Christopher J Cronin,et al.  Automated imaging of C. elegans behavior. , 2006, Methods in molecular biology.

[20]  Thomas A Cleland,et al.  Computation in the olfactory system. , 2005, Chemical senses.

[21]  Leslie B. Vosshall,et al.  Or83b Encodes a Broadly Expressed Odorant Receptor Essential for Drosophila Olfaction , 2004, Neuron.

[22]  Carlos D. Brody,et al.  Simple Networks for Spike-Timing-Based Computation, with Application to Olfactory Processing , 2003, Neuron.

[23]  P. Cosman,et al.  Using machine vision to analyze and classify Caenorhabditis elegans behavioral phenotypes quantitatively , 2002, Journal of Neuroscience Methods.

[24]  Cori Bargmann,et al.  Odorant-selective genes and neurons mediate olfaction in C. elegans , 1993, Cell.

[25]  J J Hopfield,et al.  Olfactory computation and object perception. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[26]  H. Berg,et al.  Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking , 1972, Nature.