Amino acids for Diels-Alder reactions in living cells.
暂无分享,去创建一个
Carsten Schultz | Edward A Lemke | E. Lemke | S. Milles | C. Koehler | C. Schultz | J. Szymański | Tilman Plass | M. Wiessler | Manfred Wiessler | Christine Koehler | Sigrid Milles | Tilman Plass | Jędrzej Szymański | Rainer Mueller | R. Mueller | Sigrid Milles
[1] J. Sauer,et al. Eine Studie der Diels‐Alder‐Reaktion, III: Umsetzungen von 1.2.4.5‐Tetrazinen mit Olefinen. Zur Struktur von Dihydropyridazinen , 1965 .
[2] J. Knowles,et al. Reduction of aryl azides by thiols: implications for the use of photoaffinity reagents. , 1978, Biochemical and biophysical research communications.
[3] R. Tsien,et al. Fluorescent labeling of recombinant proteins in living cells with FlAsH. , 2000, Methods in enzymology.
[4] K. Sharpless,et al. Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen , 2001 .
[5] M. G. Finn,et al. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.
[6] Morten Meldal,et al. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.
[7] Andrew B. Martin,et al. Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. , 2002, Journal of the American Chemical Society.
[8] H. Vogel,et al. Labeling of fusion proteins with synthetic fluorophores in live cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[9] Q. Wang,et al. Selective dye-labeling of newly synthesized proteins in bacterial cells. , 2005, Journal of the American Chemical Society.
[10] P. Schultz,et al. In vivo incorporation of an alkyne into proteins in Escherichia coli. , 2005, Bioorganic & medicinal chemistry letters.
[11] R. Tsien,et al. The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.
[12] Jin Kim Montclare,et al. Evolving proteins of novel composition. , 2006, Angewandte Chemie.
[13] Christian P. R. Hackenberger,et al. Chemoselektive Ligations‐ und Modifikationsstrategien für Peptide und Proteine , 2008 .
[14] J. Chin,et al. Genetically encoding N(epsilon)-acetyllysine in recombinant proteins. , 2008, Nature chemical biology.
[15] T. Carell,et al. Postsynthetic DNA modification through the copper-catalyzed azide-alkyne cycloaddition reaction. , 2008, Angewandte Chemie.
[16] Joseph M. Fox,et al. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. , 2008, Journal of the American Chemical Society.
[17] D. Schwarzer,et al. Chemoselective ligation and modification strategies for peptides and proteins. , 2008, Angewandte Chemie.
[18] C. Bertozzi,et al. In Vivo Imaging of Membrane-Associated Glycans in Developing Zebrafish , 2008, Science.
[19] R. Weissleder,et al. Tetrazine-based cycloadditions: application to pretargeted live cell imaging. , 2008, Bioconjugate chemistry.
[20] Philipp M. E. Gramlich,et al. Postsynthetische DNA‐Modifizierung mithilfe der kupferkatalysierten Azid‐Alkin‐Cycloaddition , 2008 .
[21] Timothy J. Mitchison,et al. A chemical method for fast and sensitive detection of DNA synthesis in vivo , 2008, Proceedings of the National Academy of Sciences.
[22] Ryohei Ishii,et al. Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode N(epsilon)-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification. , 2008, Chemistry & biology.
[23] O. Wolfbeis,et al. Clickable fluorophores for biological labeling--with or without copper. , 2009, Organic & biomolecular chemistry.
[24] J. Chin,et al. Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA Synthetase/tRNA(CUA) pair and click chemistry. , 2009, Journal of the American Chemical Society.
[25] W. Waldeck,et al. The Diels-Alder-Reaction with inverse-Electron-Demand, a very efficient versatile Click-Reaction Concept for proper Ligation of variable molecular Partners , 2009, International journal of medical sciences.
[26] M. Chan,et al. A pyrrolysine analogue for protein click chemistry. , 2009, Angewandte Chemie.
[27] Ralph Weissleder,et al. Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition. , 2009, Angewandte Chemie.
[28] Carsten Schultz,et al. Selektive Fluoreszenzmarkierung von Lipiden in lebenden Zellen , 2009 .
[29] C. Schultz,et al. Selective fluorescence labeling of lipids in living cells. , 2009, Angewandte Chemie.
[30] Y. Hori,et al. Covalent protein labeling based on noncatalytic beta-lactamase and a designed FRET substrate. , 2009, Journal of the American Chemical Society.
[31] E. Schuman,et al. Cell-selective metabolic labeling of proteins. , 2009, Nature chemical biology.
[32] R. Rossin,et al. SYNFORM ISSUE 2010/9 , 2010, Angewandte Chemie.
[33] A. Jäschke,et al. Post-synthetic modification of DNA by inverse-electron-demand Diels-Alder reaction. , 2010, Journal of the American Chemical Society.
[34] Jennifer A. Prescher,et al. Copper-free click chemistry in living animals , 2010, Proceedings of the National Academy of Sciences.
[35] Mike Heilemann,et al. Live-cell super-resolution imaging with trimethoprim conjugates , 2010, Nature Methods.
[36] R. Weissleder,et al. Bioorthogonal turn-on probes for imaging small molecules inside living cells. , 2010, Angewandte Chemie.
[37] Peter G Schultz,et al. Adding new chemistries to the genetic code. , 2010, Annual review of biochemistry.
[38] Carsten Schultz,et al. FlAsH‐basierte Verknüpfungen von Proteinen in lebenden Zellen , 2011 .
[39] Carsten Schultz,et al. Genetisch kodierte kupferfreie Klick‐Chemie , 2011 .
[40] A. Rutkowska,et al. A FlAsH-based cross-linker to study protein interactions in living cells. , 2011, Angewandte Chemie.
[41] J. V. Hest,et al. Protein Modification by Strain‐Promoted Alkyne–Azide Cycloaddition , 2011 .
[42] E. Lemke,et al. Genetically Encoded Copper-Free Click Chemistry , 2011, Angewandte Chemie.
[43] Peng R. Chen,et al. A readily synthesized cyclic pyrrolysine analogue for site-specific protein "click" labeling. , 2011, Chemical communications.
[44] R. Weissleder,et al. Bioorthogonal reaction pairs enable simultaneous, selective, multi-target imaging. , 2012, Angewandte Chemie.
[45] Michael T. Taylor,et al. Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. , 2012, Journal of the American Chemical Society.
[46] Swati Tyagi,et al. Click strategies for single-molecule protein fluorescence. , 2012, Journal of the American Chemical Society.