Orthogonal functions for cross-directional control of web forming processes

The cross-directional behaviour of web forming processes can be represented in terms of orthogonal basis functions. By choosing a suitable basis set, it is possible to separate controllable and uncontrollable components of the profile into low- and high-order spectral components and hence obtain a parsimonious representation. In most cases if there are sufficient actuators to control all low-order spectral components then the interaction matrix is likely to be ill-conditioned, which necessitates the incorporation of input constraints into the control design. The representation in terms of orthogonal functions allows the design of finite-horizon predictive controllers with hard inequality constraints on the input that are computationally feasible for commercial machines. It is also possible to exploit such a representation to construct efficient estimators for the process.

[1]  P. E. Wellstead,et al.  Self-tuning systems , 1991 .

[2]  Hartmut Logemann,et al.  Multivariable feedback design : J. M. Maciejowski , 1991, Autom..

[3]  David W. Clarke,et al.  Generalized predictive control - Part I. The basic algorithm , 1987, Autom..

[4]  Thomas Kailath,et al.  Linear Systems , 1980 .

[5]  C. W. Clenshaw A note on the summation of Chebyshev series , 1955 .

[6]  F. H. Young A Note on Summation , 1950 .

[7]  S. Levy,et al.  Plastics Extrusion Technology Handbook , 1981 .

[8]  R. Curtain Infinite-Dimensional Linear Systems Theory , 1978 .

[9]  E. M. Heaven,et al.  Application of systems identification to paper machine model development and simulation , 1996 .

[10]  Ulf Borison,et al.  Self-tuning regulators for a class of multivariable systems , 1979, Autom..

[11]  Peter Wellstead,et al.  Identification of cross-directional behaviour in web production: Techniques and experience , 1994 .

[12]  M. Fjeld,et al.  Control Algorithms for Cross Directional Control: The State of the Art , 1983 .

[13]  M. Zwaan An introduction to hilbert space , 1990 .

[14]  S.-C. Chen,et al.  Adaptive Profile Control for Sheetmaking Processes , 1987 .

[15]  Miroslav Kárný,et al.  Adaptive cross-direction control of paper basis weight , 1993, Autom..

[16]  Basil Kouvaritakis,et al.  Constrained stable generalised predictive control , 1993 .

[17]  Philip E. Gill,et al.  Practical optimization , 1981 .

[18]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[19]  László Máté Hilbert Space Methods in Science and Engineering , 1990 .

[20]  E Miao,et al.  A MULTIVARIABLE SELF-TUNING CONTROLLER FOR PAPER MACHINE WITH UNEQUAL TIME LAG , 1989 .

[21]  Guy A. Dumont,et al.  Paper machine cross directional basis weight control using Gram polynomials , 1993, Proceedings of IEEE International Conference on Control and Applications.

[22]  Thomas J. Boyle Control of cross-direction variations in web forming machines , 1977 .

[23]  S. Duncan The cross directional control of a web forming process. , 1989 .

[24]  David Clarke,et al.  Generalised predictive control with input constraints , 1988 .

[25]  Ulf Borisson Self-Tuning Regulators for a Class of Multivariable Systems , 1975 .

[26]  L. Fox,et al.  Chebyshev polynomials in numerical analysis , 1970 .

[27]  Richard D. Braatz,et al.  Robust performance of cross-directional basis-weight control in paper machines , 1993, Autom..

[28]  Heikki N. Koivo,et al.  A multivariable self-tuning controller , 1980, Autom..

[29]  P. Kumar,et al.  Theory and practice of recursive identification , 1985, IEEE Transactions on Automatic Control.