Effect of Sn doping on thermoelectric properties of p-type manganese telluride

[1]  D. Vashaee,et al.  Magnon drag thermopower of the antiferromagnetic semiconductor Li doped MnTe , 2018 .

[2]  Junyou Yang,et al.  Synergistic effect by Na doping and S substitution for high thermoelectric performance of p-type MnTe , 2017 .

[3]  Youwei Du,et al.  Realizing High Figure of Merit in Phase-Separated Polycrystalline Sn1-xPbxSe. , 2016, Journal of the American Chemical Society.

[4]  Junyou Yang,et al.  Enhanced thermoelectric performance of MnTe via Cu doping with optimized carrier concentration , 2016 .

[5]  Junyou Yang,et al.  Large enhancement of thermoelectric performance of CuInTe2 via a synergistic strategy of point defects and microstructure engineering , 2015 .

[6]  Yue Chen,et al.  Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe , 2015 .

[7]  Di Wu,et al.  Advanced electron microscopy for thermoelectric materials , 2015 .

[8]  U. Waghmare,et al.  Mg Alloying in SnTe Facilitates Valence Band Convergence and Optimizes Thermoelectric Properties , 2015 .

[9]  Haijun Wu,et al.  Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics , 2014 .

[10]  A. Weidenkaff,et al.  Thermoelectric study of crossroads material MnTe via sulfur doping , 2014 .

[11]  Y. Mai,et al.  Size Effect on Curie and Ordering Temperatures of Magnetic Nanoalloys , 2013 .

[12]  M. Oh,et al.  Thermoelectric properties of non-stoichiometric MnTe compounds , 2013, Electronic Materials Letters.

[13]  Vinayak P. Dravid,et al.  High performance bulk thermoelectrics via a panoscopic approach , 2013 .

[14]  Vinayak P. Dravid,et al.  Strong Phonon Scattering by Layer Structured PbSnS2 in PbTe Based Thermoelectric Materials , 2012, Advanced materials.

[15]  H. Diep,et al.  Monte Carlo study of magnetic resistivity in semiconducting MnTe , 2011, 1111.1507.

[16]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[17]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[18]  Qingjie Zhang,et al.  Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys , 2009 .

[19]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[20]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[21]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[22]  B. Hennion,et al.  Spin-wave measurements on hexagonal MnTe of NiAs-type structure by inelastic neutron scattering , 2006 .

[23]  S. Mahanti,et al.  Ab initio study of deep defect states in narrow band-gap semiconductors: group III impurities in PbTe. , 2006, Physical review letters.

[24]  Y. B. Li,et al.  Ferromagnetic semiconducting behavior of Mn1-xCrxTe compounds , 2005 .

[25]  S. K. Paranjpe,et al.  Low-temperature neutron diffraction study of MnTe , 2004, cond-mat/0408124.

[26]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[27]  T. Wojtowicz,et al.  Spin-wave measurements on MBE-grown zinc-blende structure MnTe by inelastic neutron scattering , 2002 .

[28]  Mahan,et al.  Optimum band gap of a thermoelectric material. , 1994, Physical review. B, Condensed matter.

[29]  Peter Blaha,et al.  Full-potential, linearized augmented plane wave programs for crystalline systems , 1990 .

[30]  L. Sandratskii,et al.  Energy Band Structure and Electronic Properties of NiAs Type Compounds. II. Antiferromagnetic Manganese Telluride , 1981 .

[31]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .