A neuromorphic control module for real-time vergence eye movements on the iCub robot head

We implemented a cortical model of vergence eye movements on a humanoid robot head (iCub). The proposed control strategy resorts on a computational substrate of modeled V1 complex cells that provides a distributed representation of binocular disparity information. The model includes a normalization stage that allows for a vergence control independent of the texture of the object and of luminance changes. The disparity information is exploited to provide a signal able to nullify the binocular disparity in a foveal region.

[1]  George K. Hung,et al.  A Dual-Mode Dynamic Model of the Vergence Eye Movement System , 1986, IEEE Transactions on Biomedical Engineering.

[2]  Bertram E. Shi,et al.  Autonomous Development of Vergence Control Driven by Disparity Energy Neuron Populations , 2010, Neural Computation.

[3]  Manuela Chessa,et al.  A Fast Joint Bioinspired Algorithm for Optic Flow and Two-Dimensional Disparity Estimation , 2009, ICVS.

[4]  Roderic A. Grupen,et al.  Learning real-time stereo vergence control , 1999, Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014).

[5]  Giorgio Metta,et al.  Design of the robot-cub (iCub) head , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[6]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[7]  Radu Horaud,et al.  Cyclopean Geometry of Binocular Vision , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  Manuela Chessa,et al.  A cortical model for binocular vergence control without explicit calculation of disparity , 2010, Neurocomputing.

[9]  Fabio Solari,et al.  Fast technique for phase-based disparity estimation with no explicit calculation of phase , 2001 .

[10]  J. Triesch,et al.  Emergence of Disparity Tuning during the Development of Vergence Eye Movements , 2007, 2007 IEEE 6th International Conference on Development and Learning.

[11]  I. Ohzawa,et al.  Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. , 1990, Science.

[12]  J. F. Cárdenas-García,et al.  3D reconstruction of objects using stereo imaging , 1995 .

[13]  Hanspeter A. Mallot,et al.  Phase-based binocular vergence control and depth reconstruction using active vision , 1994 .

[14]  F. A. Miles,et al.  Vergence eye movements in response to binocular disparity without depth perception , 1997, Nature.

[15]  F. A. Miles,et al.  Single-unit activity in cortical area MST associated with disparity-vergence eye movements: evidence for population coding. , 2001, Journal of neurophysiology.

[16]  David J. Fleet,et al.  Modelling binocular neurons in the primary visual cortex , 1997 .

[17]  H. Ogmen,et al.  Neural network model of short-term horizontal disparity vergence dynamics. , 1997, Vision research.

[18]  Ning Qian,et al.  Computing Stereo Disparity and Motion with Known Binocular Cell Properties , 1994, Neural Computation.