Computer-generated models of a-SiSe2: I. The algorithm

Abstract A computer algorithm is presented which is capable of generating fully valence-satisfied models based on edge-sharing Si ( Se 1 2 ) 4 tetrahedra. Facilities are available within the algorithm to introduce corner-sharing tetrahedral units, varying lengths of parallel-running chains and ring-type structures. The algorithm is capable of building models to the correct material density. It is not the aim of these studies to produce an exact structure for a given glass. However, this approach enables the elimination of many structural configurations, or at least puts upper and lower limits on the percentage of such features in the real glass.

[1]  P. Galison,et al.  Model for the structure of amorphous selenium and tellurium , 1976 .

[2]  R. W. Johnson,et al.  Preparation and characterization of SixSe1−x glasses and determination of the equilibrium phase diagram , 1986 .

[3]  B. Krebs,et al.  Silicon disulphide and silicon diselenide: a reinvestigation , 1982 .

[4]  Thomas F. Soules,et al.  A molecular dynamic calculation of the structure of B2O3 glass , 1980 .

[5]  R. W. Johnson,et al.  Diffraction isosbestic points and structural systematics in the SixSe1 − x glass system* , 1986 .

[6]  Denis Weaire,et al.  Relaxed continuous random network models: (I). Structural characteristics☆ , 1974 .

[7]  R. J. Bell,et al.  The structure of vitreous silica: Validity of the random network theory , 1972 .

[8]  B. L. Averbach,et al.  Monte Carlo models of atomic arrangements in arsenic-selenium glasses , 1974 .

[9]  S. R. Elliott,et al.  A continuous random network approach to the structure of vitreous boron trioxide , 1978 .

[10]  D. E. Polk,et al.  Systematic generation of random networks , 1974 .

[11]  D. E. Polk,et al.  Tetrahedrally Coordinated Random-Network Structure , 1973 .

[12]  H.‐H. Emons,et al.  Über das Siliciummonoselenid , 1968 .

[13]  R. Alben,et al.  Structural model for amorphous solid water , 1975 .

[14]  David L. Price,et al.  The structure of silicon-selenium glasses: I. Short-range order☆ , 1986 .

[15]  R. S. Henderson,et al.  Vibrational studies of crystalline and glassy SiSe2 , 1984 .

[16]  J. D. Bernal,et al.  A Geometrical Approach to the Structure Of Liquids , 1959, Nature.

[17]  Denis Weaire,et al.  Modeling Tetrahedrally Bonded Random Networks by Computer , 1987 .

[18]  Richard J. Temkin,et al.  Modeling the structure of amorphous tetrahedrally coordinated semiconductors. I , 1974 .

[19]  A. Wright,et al.  Diffraction studies of glass structure. I. Theory and quasi-crystalline model , 1972 .

[20]  P. Gaskell,et al.  Refinement of a random network model for vitreous silicon dioxide , 1980 .

[21]  David Beeman,et al.  Computer restructuring of continuous random tetrahedral networks , 1975 .

[22]  Elliott,et al.  Computer-generated models of a-SiSe2: Evidence for a glass exhibiting medium-range order. , 1987, Physical review letters.

[23]  E. A. Davis,et al.  A continuous random network model with three-fold coordination , 1974 .

[24]  R. Grasselli,et al.  Atomic structure of SiS 2 and SiSe 2 glasses , 1983 .

[25]  J. E. Griffiths,et al.  Crystalline SiSe2andSixSe1−xglasses: Syntheses, glass formation, structure, phase separation, and Raman spectra , 1984 .

[26]  P. N. Keating,et al.  Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure , 1966 .