Comparisons of motion-blur assessment strategies for newly emergent LCD and backlight driving technologies

— Compared to the conventional cathode-ray-tube TV, the conventional liquid-crystal TV has the shortcoming of motion blur. Motion blur can be characterized by the motion-picture response-time metric (MPRT). The MPRT of a display can be measured directly using a commercial MPRT instrument, but it is expensive in comparison with a photodiode that is used in temporal-response (temporal luminance transition) measurements. An alternative approach is to determine the motion blur indirectly via the temporal point-spread function (PSF), which does not need an accurate tracking mechanism as required for the direct “spatial” measurement techniques. In this paper, the measured motion blur is compared by using both the spatial-tracking-camera approach and the temporal-response approach at various backlight flashing widths. In comparison to other motion-blur studies, this work has two unique advantages: (1) both spatial and temporal information was measured simultaneously and (2) several temporal apertures of the display were used to represent different temporal PSFs. This study shows that the temporal method is an attractive alternative for the MPRT instrument to characterize the LCD's temporal performance.