Spatial Shrinkage Estimation of Diffusion Tensors on Diffusion-Weighted Imaging Data

Diffusion tensor imaging (DTI), based on the diffusion-weighted imaging (DWI) data acquired from magnetic resonance experiments, has been widely used to analyze the physical structure of white-matter fibers in the human brain in vivo. The raw DWI data, however, carry noise; this contaminates the diffusion tensor (DT) estimates and introduces systematic bias into the induced eigenvalues. These bias components affect the effectiveness of fiber-tracking algorithms. In this article, we propose a two-stage spatial shrinkage estimation (SpSkE) procedure to accommodate the spatial information carried in DWI data in DT estimation and to reduce the bias components in the corresponding derived eigenvalues. To this end, in the framework of the heteroscedastic linear model, SpSkE incorporates L 1-type penalization and the locally weighted least-square function. The theoretical properties of SpSkE are explored. The effectiveness of SpSkE is further illustrated by simulation and real-data examples. Supplementary materials for this article are available online.

[1]  R. Deriche,et al.  Design of multishell sampling schemes with uniform coverage in diffusion MRI , 2013, Magnetic resonance in medicine.

[2]  Tao Yu,et al.  Local Tests for Identifying Anisotropic Diffusion Areas in Human Brain with DTI. , 2013, The annals of applied statistics.

[3]  Dinggang Shen,et al.  Multiscale adaptive regression models for neuroimaging data , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[4]  Karsten Tabelow,et al.  Structural Adaptive Smoothing in Diffusion Tensor Imaging: The R Package dti , 2009 .

[5]  Yingcun Xia,et al.  Shrinkage Estimation of the Varying Coefficient Model , 2008 .

[6]  H. Zou,et al.  One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. , 2008, Annals of statistics.

[7]  Karsten Tabelow,et al.  Diffusion tensor imaging: Structural adaptive smoothing , 2008, NeuroImage.

[8]  J. Ibrahim,et al.  Statistical Analysis of Diffusion Tensors in Diffusion-Weighted Magnetic Resonance Imaging Data , 2007 .

[9]  Chenlei Leng,et al.  Unified LASSO Estimation by Least Squares Approximation , 2007 .

[10]  Runze Li,et al.  Tuning parameter selectors for the smoothly clipped absolute deviation method. , 2007, Biometrika.

[11]  Paul H. C. Eilers,et al.  3D space-varying coefficient models with application to diffusion tensor imaging , 2007, Comput. Stat. Data Anal..

[12]  Chih-Ling Tsai,et al.  Regression coefficient and autoregressive order shrinkage and selection via the lasso , 2007 .

[13]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[14]  Derek K. Jones,et al.  RESTORE: Robust estimation of tensors by outlier rejection , 2005, Magnetic resonance in medicine.

[15]  E. Bullmore,et al.  Formal characterization and extension of the linearized diffusion tensor model , 2005, Human brain mapping.

[16]  Andrew L. Alexander,et al.  An error analysis of white matter tractography methods: synthetic diffusion tensor field simulations , 2003, NeuroImage.

[17]  Derek K. Jones,et al.  Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI , 2003, Magnetic resonance in medicine.

[18]  Isabelle Bloch,et al.  Distortion correction and robust tensor estimation for MR diffusion imaging , 2002, Medical Image Anal..

[19]  L. M. Auer,et al.  Fiber Tracking from DTI Using Linear State Space Models: Detectability of the Pyramidal Tract , 2002, NeuroImage.

[20]  A. Anderson Theoretical analysis of the effects of noise on diffusion tensor imaging , 2001, Magnetic resonance in medicine.

[21]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[22]  Jianqing Fan,et al.  Simultaneous Confidence Bands and Hypothesis Testing in Varying‐coefficient Models , 2000 .

[23]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[24]  P. Basser,et al.  Statistical artifacts in diffusion tensor MRI (DT‐MRI) caused by background noise , 2000, Magnetic resonance in medicine.

[25]  Carl-Fredrik Westin,et al.  Image Processing for Diffusion Tensor Magnetic Resonance Imaging , 1999, MICCAI.

[26]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[27]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[28]  Sam T. S. Wong,et al.  A strategy for sampling on a sphere applied to 3D selective RF pulse design , 1994, Magnetic resonance in medicine.

[29]  P. Basser,et al.  Analytical Expressions for the b Matrix in NMR Diffusion Imaging and Spectroscopy , 1994 .

[30]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[31]  J. Tsuruda,et al.  Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. , 1990, Radiology.

[32]  Timothy Edward John Behrens,et al.  Diffusion MRI : from quantitative measurement to in vivo neuroanatomy , 2014 .

[33]  Moo K. Chung,et al.  Anisotropic Kernel Smoothing in Diffusion Tensor Imaging : Theoretical Framework , 2004 .

[34]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[35]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[36]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[37]  S. O. Rice,et al.  Mathematical Analysis of Random Noise-Conclusion , 1945 .