Using PROMETHEE to assess bioenergy pathways

Investment and policy decisions in the context of sustainable development are classic application areas for multi-criteria decision analysis. Ranking various pathways, i.e. conversion routes, for biomass use in the energy sector is particularly challenging. Depending on how ecological, economic, and social criteria are weighed, a multi-criteria decision analysis can lead to significantly contrasting recommendations. In this paper, we present a decision support for eleven energy pathways using decision criteria drawn from all three sustainability dimensions—ecological, economic, and social. For the graphical presentation of the relatively large number of pathways and criteria weightings, we introduce a novel visualization approach that combines the results of both PROMETHEE I and II. This visualization approach permits stakeholders to quickly and intuitively gather insights about the result structure and the consequences of different input parameters, for instance different criteria weightings.

[1]  G. Munda “Measuring Sustainability”: A Multi-Criterion Framework , 2005 .

[2]  Y. De Smet,et al.  Visual PROMETHEE: Developments of the PROMETHEE & GAIA multicriteria decision aid methods , 2009, 2009 IEEE International Conference on Industrial Engineering and Engineering Management.

[3]  Hans Vrolijk,et al.  Behavioral and procedural consequences of structural variation in value trees , 2001, Eur. J. Oper. Res..

[4]  Mario Martín-Gamboa,et al.  A review of life-cycle approaches coupled with data envelopment analysis within multi-criteria decision analysis for sustainability assessment of energy systems , 2017 .

[5]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[6]  Jutta Geldermann,et al.  Assessment of Different Bioenergy Concepts in Terms of Sustainable Development , 2013 .

[7]  Pekka Korhonen,et al.  Choice behavior in interactive multiple-criteria decision making , 1990 .

[8]  Simon French,et al.  The varied contexts of environmental decision problems and their implications for decision support , 2005 .

[9]  Thomas L. Saaty,et al.  Making and validating complex decisions with the AHP/ANP , 2005 .

[10]  James S. Dyer,et al.  Maut — Multiattribute Utility Theory , 2005 .

[11]  Simon French,et al.  Multi-criteria decision support and evaluation of strategies for nuclear remediation management , 2009 .

[12]  Konstantinos Aravossis,et al.  Decision making in renewable energy investments: A review , 2016 .

[13]  Reinhard Madlener,et al.  New ways for the integrated appraisal of national energy scenarios: The case of renewable energy use in Austria , 2007 .

[14]  Panagiotis Kontogiorgos,et al.  Multicriteria energy policy investments and energy market clearance via integer programming , 2016, Central Eur. J. Oper. Res..

[15]  W. Edwards,et al.  Decision Analysis and Behavioral Research , 1986 .

[16]  Jutta Geldermann,et al.  Modified PROMETHEE approach for assessing energy technologies , 2010 .

[17]  Edmundas Kazimieras Zavadskas,et al.  A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015 , 2017 .

[18]  Jyri Seppälä,et al.  On the meaning of the distance-to-target weighting method and normalisation in Life Cycle Impact assessment , 2001 .

[19]  G. Munda Social Multi-Criteria Evaluation for a Sustainable Economy , 2007 .

[20]  Judit Lienert,et al.  Four Common Simplifications of Multi-Criteria Decision Analysis do not hold for River Rehabilitation , 2016, PloS one.

[21]  R. Clift,et al.  Stakeholder engagement within the sustainability assessment of bioenergy: case studies in heat, power and perennial and annual crops from the UK. , 2015 .

[22]  Martin Wietschel,et al.  Renewables in the EU after 2020: a multi-criteria decision analysis in the context of the policy formation process , 2016 .

[23]  Jutta Geldermann,et al.  Development of a multiple criteria based decision support system for environmental assessment of recycling measures in the iron and steel making industry , 1998 .

[24]  William Remus,et al.  A Study of Graphical and Tabular Displays and Their Interaction with Environmental Complexity , 1987 .

[25]  Ching-Lai Hwang,et al.  Multiple Attribute Decision Making: Methods and Applications - A State-of-the-Art Survey , 1981, Lecture Notes in Economics and Mathematical Systems.

[26]  L. Simões da Silva,et al.  A probabilistic decision-making approach for the sustainable assessment of infrastructures , 2012, Expert Syst. Appl..

[27]  Izak Benbasat,et al.  An Experimental Evaluation of Graphical and Color-Enhanced Information Presentation , 1985 .

[28]  Bertrand Mareschal,et al.  Weight stability intervals in multicriteria decision aid , 1988 .

[29]  B. Fasolo,et al.  Tailoring value elicitation to decision makers' numeracy and fluency: Expressing value judgments in numbers or words , 2014 .

[30]  T. Stewart A CRITICAL SURVEY ON THE STATUS OF MULTIPLE CRITERIA DECISION MAKING THEORY AND PRACTICE , 1992 .

[31]  Jutta Geldermann,et al.  Using methods of Multi-Criteria Decision Making to provide decision support concerning local bioenergy projects , 2017 .

[32]  C. Hwang Multiple Objective Decision Making - Methods and Applications: A State-of-the-Art Survey , 1979 .

[33]  Pascale Zaraté,et al.  Energy planning: a multi-level and multicriteria decision making structure proposal , 2009, Central Eur. J. Oper. Res..

[34]  Anita Schöbel,et al.  On the Similarities of Some Multi‐Criteria Decision Analysis Methods , 2011 .

[35]  Kaisa Miettinen,et al.  Survey of methods to visualize alternatives in multiple criteria decision making problems , 2012, OR Spectrum.

[36]  Ortwin Renn,et al.  Inclusive risk governance: concepts and application to environmental policy making , 2009 .

[37]  Theodor J. Stewart,et al.  Multiple Criteria Decision Analysis , 2001 .

[38]  Marko Bohanec,et al.  A qualitative multi-criteria modelling approach to the assessment of electric energy production technologies in Slovenia , 2017, Central Eur. J. Oper. Res..

[39]  R. S. Dhillon,et al.  Biomass Conversion: The Interface of Biotechnology, Chemistry and Materials Science , 2012 .

[40]  Ekko C. van Ierland,et al.  A holistic sustainability assessment tool for bioenergy using the Global Bioenergy Partnership (GBEP) sustainability indicators , 2014 .

[41]  Craig Chapman,et al.  Bioenergy Ontology for Automatic Pathway Generation , 2015 .

[42]  Jim Petrie,et al.  Design and Analysis of Bioenergy Networks , 2009 .

[43]  B. Roy Paradigms and Challenges , 2005 .

[44]  S. Vinodh,et al.  PROMETHEE based sustainable concept selection , 2012 .

[45]  Ward Edwards,et al.  How to Use Multiattribute Utility Measurement for Social Decisionmaking , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[46]  Christophe Gonzales,et al.  Multiattribute Utility Theory , 2010, Decision-making Process.

[47]  Gerardine DeSanctis,et al.  Understanding the effectiveness of computer graphics for decision support: a cumulative experimental approach , 1986, CACM.

[48]  Rudolf Vetschera,et al.  Visualisierungstechniken in Entscheidungsproblemen bei mehrfacher Zielsetzung , 1994 .

[49]  Gerardine DeSanctis,et al.  COMPUTER GRAPHICS AS DECISION AIDS: DIRECTIONS FOR RESEARCH* , 1984 .