Biogeo: an R package for assessing and improving data quality of occurrence record datasets

The DST-NRF Centre for Invasion Biology, the National Research Foundation and the University of Pretoria.

[1]  Matthew E. Aiello-Lammens,et al.  spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models , 2015 .

[2]  J. Elith,et al.  Species Distribution Models: Ecological Explanation and Prediction Across Space and Time , 2009 .

[3]  Tim Newbold,et al.  Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models , 2010 .

[4]  Georgina M. Mace,et al.  Distorted Views of Biodiversity: Spatial and Temporal Bias in Species Occurrence Data , 2010, PLoS biology.

[5]  K. Gaston,et al.  The sizes of species’ geographic ranges , 2009 .

[6]  Mark P. Robertson,et al.  Getting the most out of atlas data , 2010 .

[7]  Daniel Sabatier,et al.  Species Distribution Modelling: Contrasting presence-only models with plot abundance data , 2018, Scientific Reports.

[8]  M. Robertson,et al.  A technique for evaluating species richness maps generated from collections data , 2006 .

[9]  Mark P. Robertson,et al.  Introduced and invasive cactus species: a global review , 2014, AoB PLANTS.

[10]  A. Suarez,et al.  The Value of Museum Collections for Research and Society , 2004 .

[11]  A. Peterson,et al.  New developments in museum-based informatics and applications in biodiversity analysis. , 2004, Trends in ecology & evolution.

[13]  Antoine Guisan,et al.  Predictive habitat distribution models in ecology , 2000 .

[14]  Alexandre Antonelli,et al.  Estimating species diversity and distribution in the era of Big Data: to what extent can we trust public databases? , 2015, Global ecology and biogeography : a journal of macroecology.

[15]  Thorsten Wiegand,et al.  Adopting a spatially explicit perspective to study the mysterious fairy circles of Namibia , 2015 .

[16]  Tim Sutton,et al.  How Global Is the Global Biodiversity Information Facility? , 2007, PloS one.

[17]  J. Edwards Research and Societal Benefits of the Global Biodiversity Information Facility , 2004 .

[18]  M. Silman,et al.  Modelling the responses of Andean and Amazonian plant species to climate change: the effects of georeferencing errors and the importance of data filtering , 2010 .

[19]  K. Gaston Global patterns in biodiversity , 2000, Nature.

[20]  T. Newbold attention to species distribution models Applications and limitations of museum data for conservation and ecology , with particular , 2010 .

[21]  Arthur Chapman,et al.  © 2005, Global Biodiversity Information Facility Material in this publication is free to use, with proper attribution. Recommended citation format: Chapman, A. D. 2005. Principles of Data Quality, version 1.0. Report for the Global Biodiversity Information Facility, Copenhagen. , 2005 .

[22]  Luigi Guarino,et al.  Using GIS to check co-ordinates of genebank accessions , 1999, Genetic Resources and Crop Evolution.

[23]  R. Guralnick,et al.  BioGeomancer: Automated Georeferencing to Map the World's Biodiversity Data , 2006, PLoS biology.

[24]  J. Lobo,et al.  Historical bias in biodiversity inventories affects the observed environmental niche of the species , 2008 .

[25]  V. Funk,et al.  Systematic data in biodiversity studies: use it or lose it. , 2002, Systematic biology.

[26]  S. Reddy,et al.  Geographical sampling bias and its implications for conservation priorities in Africa , 2003 .

[27]  Catherine H. Graham,et al.  A comparison of methods for mapping species ranges and species richness , 2006 .

[28]  Jennifer A. Miller,et al.  Mapping Species Distributions: Spatial Inference and Prediction , 2010 .

[29]  W. Ponder,et al.  Evaluation of Museum Collection Data for Use in Biodiversity Assessment , 2001 .

[30]  Alberto Jiménez-Valverde,et al.  Limitations of Biodiversity Databases: Case Study on Seed‐Plant Diversity in Tenerife, Canary Islands , 2007, Conservation biology : the journal of the Society for Conservation Biology.

[31]  Nathan J B Kraft,et al.  Functional trait space and the latitudinal diversity gradient , 2014, Proceedings of the National Academy of Sciences.

[33]  D. Richardson,et al.  Defining optimal sampling effort for large-scale monitoring of invasive alien plants: a Bayesian method for estimating abundance and distribution. , 2011 .

[34]  Liana N. Joseph,et al.  Grid-based monitoring methods for detecting population declines: Sensitivity to spatial scale and consequences of scale correction , 2008 .

[35]  Thomas E. Lacher,et al.  Latitudinal patterns of range size and species richness of New World woody plants , 2007 .

[36]  D. Richardson,et al.  Macroecology meets invasion ecology: linking the native distributions of Australian acacias to invasiveness , 2011 .

[37]  Nathan J B Kraft,et al.  The biogeography and filtering of woody plant functional diversity in North and South America , 2012 .

[38]  D. Ross Robertson,et al.  Global biogeographical data bases on marine fishes: caveat emptor , 2008 .