Parallel Algorithms and Condition Estimators for Standard and Generalized Triangular Sylvester-Type Matrix Equations

We discuss parallel algorithms for solving eight common standard and generalized triangular Sylvester-type matrix equation. Our parallel algorithms are based on explicit blocking, 2D block-cyclic data distribution of the matrices and wavefront-like traversal of the right hand side matrices while solving small-sized matrix equations at different nodes and updating the rest of the right hand side using level 3 operations. We apply the triangular solvers in condition estimation, developing parallel sep-1-estimators. Some experimental results are presented.

[1]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[2]  Bo Kågström,et al.  GEMM-based level 3 BLAS: high-performance model implementations and performance evaluation benchmark , 1998, TOMS.

[3]  Nicholas J. Higham,et al.  Perturbation theory and backward error forAX−XB=C , 1993 .

[4]  James Demmel,et al.  LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.

[5]  Bo Kågström,et al.  Parallel ScaLAPACK-Style Algorithms for Solving Continuous-Time Sylvester Matrix Equations , 2003, Euro-Par.

[6]  Nicholas J. Higham,et al.  Perturbation Theory And Backward Error For , 1993 .

[7]  Andrew G. Glen,et al.  APPL , 2001 .

[8]  Isak Jonsson,et al.  Recursive blocked algorithms for solving triangular systems—Part I: one-sided and coupled Sylvester-type matrix equations , 2002, TOMS.

[9]  Jack Dongarra,et al.  ScaLAPACK Users' Guide , 1987 .

[10]  Isak Jonsson,et al.  Combining Explicit, Recursive Blocking for Solving Triangular Sylvester-Type Matrix Equations on Distributed Memory Platforms , 2004, Euro-Par.

[11]  Bo Kågström,et al.  Computing eigenspaces with specified eigenvalues of a regular matrix pair (A, B) and condition estimation: theory, algorithms and software , 1996, Numerical Algorithms.

[12]  Gene H. Golub,et al.  Matrix computations , 1983 .

[13]  Erik Hagersten,et al.  THROOM — Supporting POSIX Multithreaded Binaries on a Cluster , 2003 .

[14]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[15]  Nicholas J. Higham,et al.  FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation , 1988, TOMS.

[16]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[17]  Bo Kågström,et al.  Distributed and Shared Memory Block Algorithms for the Triangular Sylvester Equation with øperatornamesep - 1 Estimators , 1992, SIAM J. Matrix Anal. Appl..

[18]  Bo Kågström,et al.  Algorithm 784: GEMM-based level 3 BLAS: portability and optimization issues , 1998, TOMS.

[19]  Peter Poromaa Parallel Algorithms for Triangular Sylvester Equations: Design, Scheduling and Saclability Issues , 1998, PARA.

[20]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[21]  Bo Kågström,et al.  Evaluating Parallel Algorithms for Solving Sylvester-Type Matrix Equations: Direct Transformation-Based Versus Iterative Matrix-Sign-Function-Based Methods , 2004, PARA.

[22]  Isak Jonsson,et al.  RECSY - A High Performance Library for Sylvester-Type Matrix Equations , 2003, Euro-Par.

[23]  Isak Jonsson,et al.  Recursive blocked algorithms for solving triangular systems—Part II: two-sided and generalized Sylvester and Lyapunov matrix equations , 2002, TOMS.

[24]  Marco Danelutto,et al.  Euro-Par 2004 Parallel Processing , 2004, Lecture Notes in Computer Science.