From Prescriptive Programming of Solid-State Devices to Orchestrated Self-organisation of Informed Matter

Achieving real-time response to complex, ambiguous, high-bandwidth data is impractical with conventional programming. Only the narrow class of compressible input-output maps can be specified with feasibly sized programs. Present computing concepts enforce formalisms that are arbitrary from the perspective of the physics underlying their implementation. Efficient physical realizations are embarrassed by the need to implement the rigidly specified instructions requisite for programmable systems. The conventional paradigm of erecting strong constraints and potential barriers that narrowly prescribe structure and precisely control system state needs to be complemented with a new approach that relinquishes detailed control and reckons with autonomous building blocks. Brittle prescriptive control will need to be replaced with resilient self-organisation to approach the robustness and efficiency afforded by natural systems. Structure-function self-consistency will be key to the spontaneous generation of functional architectures that can harness novel molecular and nano materials in an effective way for increased computational power.

[1]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[2]  Andrew Adamatzky,et al.  Parallel controllers for decentralized robots: towards nano design , 2000 .

[3]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.

[4]  A. Ninfa,et al.  Development of Genetic Circuitry Exhibiting Toggle Switch or Oscillatory Behavior in Escherichia coli , 2003, Cell.

[5]  Almut Schüz Neuroanatomy in a computational perspective , 1998 .

[6]  Klaus-Peter Zauner,et al.  Molecular approach to informal computing , 2001, Soft Comput..

[7]  Wolfgang Banzhaf,et al.  Artificial ChemistriesA Review , 2001, Artificial Life.

[8]  Marvin Minsky,et al.  Computation : finite and infinite machines , 2016 .

[9]  Rolf Landauer,et al.  Fundamental Limitations in the Computational Process , 1976 .

[10]  Andrew Adamatzky,et al.  Molecular Computing , 2003 .

[11]  Karen A. Fahrner,et al.  Control of direction of flagellar rotation in bacterial chemotaxis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M Conrad The seed germination model of enzyme catalysis. , 1992, Bio Systems.

[13]  J. Adler,et al.  "Decision"-Making in Bacteria: Chemotactic Response of Escherichia coli to Conflicting Stimuli , 1974, Science.

[14]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[15]  Jeffrey O. Pfaffmann,et al.  Scouting context-sensitive components , 2001, Proceedings Third NASA/DoD Workshop on Evolvable Hardware. EH-2001.

[16]  Paul J. Layzell,et al.  Explorations in design space: unconventional electronics design through artificial evolution , 1999, IEEE Trans. Evol. Comput..

[17]  Edward A. Rietman,et al.  Analog computation with rings of quasiperiodic oscillators: the microdynamics of cognition in living machines , 2003, Robotics Auton. Syst..

[18]  Julian Francis Miller,et al.  Evolution in materio: looking beyond the silicon box , 2002, Proceedings 2002 NASA/DoD Conference on Evolvable Hardware.

[19]  M Conrad,et al.  Scaling of efficiency in programmable and non-programmable systems. , 1995, Bio Systems.

[20]  Michael Conrad,et al.  The price of programmability , 1988 .

[21]  Klaus-Peter Zauner,et al.  Conformation-based computing: a rational and a recipe , 2003 .

[22]  Jens Scheidtmann,et al.  Hunting for better catalysts and materials-combinatorial chemistry and high throughput technology , 2001 .

[23]  E. Shapiro,et al.  An autonomous molecular computer for logical control of gene expression , 2004, Nature.

[24]  Shuguang Zhang Fabrication of novel biomaterials through molecular self-assembly , 2003, Nature Biotechnology.

[25]  William B. Langdon,et al.  How Many Good Programs are There? How Long are They? , 2002, FOGA.

[26]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[27]  Ramón Compañó Trends in nanoelectronics , 2001 .

[28]  Terry Elliott,et al.  Developmental robotics: manifesto and application , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  Wolfgang Banzhaf,et al.  Towards a metabolic robot control system , 1998 .

[30]  Derek Partridge Non-programmed computation , 2000, CACM.

[31]  Farren J. Isaacs,et al.  Synthetic biology evolves. , 2004, Trends in biotechnology.

[32]  Klaus-Peter Zauner,et al.  Parallel Computing with DNA: Toward the Anti-Universal Machine , 1996, PPSN.

[33]  Jean-Marie Lehn,et al.  Supramolecular chemistry — Scope and perspectives: Molecules — Supermolecules — Molecular devices , 1988 .

[34]  M Conrad,et al.  Information processing in molecular systems. , 1972, Currents in modern biology.

[35]  BanzhafWolfgang,et al.  Artificial chemistriesa review , 2001 .

[36]  Mark W. Tilden,et al.  Living machines , 1995, Robotics Auton. Syst..

[37]  Jean-Marie Lehn,et al.  Supramolecular chemistry: from molecular information towards self-organization and complex matter , 2004 .

[38]  John E. Johnson,et al.  Virus assembly: Imaging a molecular machine , 1999, Current Biology.

[39]  N. Seeman DNA in a material world , 2003, Nature.

[40]  M Conrad Quantum mechanics and cellular information processing: the self-assembly paradigm. , 1990, Biomedica biochimica acta.

[41]  Achim Müller,et al.  Inorganic chemistry goes protein size: a Mo368 nano-hedgehog initiating nanochemistry by symmetry breaking. , 2002, Angewandte Chemie.

[42]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[43]  Andrew Adamatzky,et al.  Experimental implementation of mobile robot taxis with onboard Belousov-Zhabotinsky chemical medium , 2004 .

[44]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..