GENOM-POF: multi-objective evolutionary synthesis of analog ICs with corners validation

In this paper, a multi-objective design methodology and tool for automatic analog IC synthesis, which takes into account the effects of process variations, is presented. By varying the technological and environmental parameters, the robustness of the solutions is enhanced. The automatic analog IC sizing tool, GENOM-POF, was implemented to demonstrate the methodology and to verify the effects of corner cases on the Pareto optimal front (POF). The impacts of NSGA-II parameters when applied to analog circuit sizing were investigated, and three different design strategies were tested in a benchmark circuit, showing the effectiveness of multi-objective design of analog cells.

[1]  Domine Leenaerts,et al.  DARWIN: CMOS opamp Synthesis by Means of a Genetic Algorithm , 1995, 32nd Design Automation Conference.

[2]  Nuno Horta,et al.  Analog circuits optimization based on evolutionary computation techniques , 2010, Integr..

[3]  H. Wallinga,et al.  SEAS: a simulated evolution approach for analog circuit synthesis , 1991, Proceedings of the IEEE 1991 Custom Integrated Circuits Conference.

[4]  Shoou-Jinn Chang,et al.  Automated passive filter synthesis using a novel tree representation and genetic programming , 2006, IEEE Transactions on Evolutionary Computation.

[5]  Fathey M. El-Turky,et al.  BLADES: an artificial intelligence approach to analog circuit design , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[6]  Engin Deniz,et al.  Hierarchical performance estimation of analog blocks using Pareto Fronts , 2010, 6th Conference on Ph.D. Research in Microelectronics & Electronics.

[7]  Georges G. E. Gielen,et al.  Classification of analog synthesis tools based on their architecture selection mechanisms , 2008, Integr..

[8]  Stephen P. Boyd,et al.  GPCAD: a tool for CMOS op-amp synthesis , 1998, 1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287).

[9]  Jason D. Lohn,et al.  A circuit representation technique for automated circuit design , 1999, IEEE Trans. Evol. Comput..

[10]  Rob A. Rutenbar,et al.  Anaconda: simulation-based synthesis of analog circuits viastochastic pattern search , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[11]  Georges G. E. Gielen,et al.  Trustworthy Genetic Programming-Based Synthesis of Analog Circuit Topologies Using Hierarchical Domain-Specific Building Blocks , 2011, IEEE Transactions on Evolutionary Computation.

[12]  Georges Gielen,et al.  Symbolic analysis methods and applications for analog circuits: a tutorial overview , 1994, Proc. IEEE.

[13]  Nuno Horta,et al.  Analog Circuits and Systems Optimization based on Evolutionary Computation Techniques , 2010, Studies in Computational Intelligence.

[14]  Rob A. Rutenbar,et al.  Computer-aided design of analog and mixed-signal integrated circuits , 2000, Proceedings of the IEEE.

[15]  Jingsong He,et al.  Evolutionary design of operational amplifier using variable-length differential evolution algorithm , 2010, 2010 International Conference on Computer Application and System Modeling (ICCASM 2010).

[16]  N. Lourengo,et al.  LAYGEN - Automatic Layout Generation of Analog ICs from Hierarchical Template Descriptions , 2006, 2006 Ph.D. Research in Microelectronics and Electronics.

[17]  Günhan Dündar,et al.  An evolutionary approach to automatic synthesis of high-performance analog integrated circuits , 2003, IEEE Trans. Evol. Comput..

[18]  Christofer Toumazou,et al.  The invention of CMOS amplifiers using genetic programming and current-flow analysis , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[19]  Eric A. Vittoz,et al.  IDAC: an interactive design tool for analog CMOS circuits , 1987 .

[20]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[21]  Elisenda Roca,et al.  Context-independent performance modeling of operational amplifiers using Pareto fronts , 2010, 2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD).

[22]  Rob A. Rutenbar,et al.  Integer programming based topology selection of cell-level analog circuits , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[23]  Soon-Jyh Chang,et al.  A bias-driven approach for automated design of operational amplifiers , 2009, 2009 International Symposium on VLSI Design, Automation and Test.

[24]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[25]  John R. Koza,et al.  Automated synthesis of analog electrical circuits by means of genetic programming , 1997, IEEE Trans. Evol. Comput..

[26]  Nuno Horta,et al.  GA-SVM feasibility model and optimization kernel applied to analog IC design automation , 2007, GLSVLSI '07.

[27]  Nuno Horta,et al.  LAYGEN II: automatic analog ICs layout generator based on a template approach , 2012, GECCO '12.

[28]  Hung-Ming Chen,et al.  Integrated hierarchical synthesis of analog/RF circuits with accurate performance mapping , 2011, 2011 12th International Symposium on Quality Electronic Design.

[29]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..