Beyond 10% efficiency Cu2ZnSnS4 solar cells enabled by modifying the heterojunction interface chemistry

ZnCdS buffer layers deposited from high concentration ammonia enable a less defective interface and over 10% efficiency Cu2ZnSnS4 solar cell.

[1]  M. Green,et al.  Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment , 2018, Nature Energy.

[2]  Martin A. Green,et al.  Solar cell efficiency tables (version 52) , 2018, Progress in Photovoltaics: Research and Applications.

[3]  M. Green,et al.  Self-assembled Nanometer-Scale ZnS Structure at the CZTS/ZnCdS Heterointerface for High-Efficiency Wide Band Gap Cu2ZnSnS4 Solar Cells , 2018 .

[4]  Martin A. Green,et al.  Beyond 11% Efficient Sulfide Kesterite Cu2ZnxCd1–xSnS4 Solar Cell: Effects of Cadmium Alloying , 2017 .

[5]  Kulwinder Kaur,et al.  Strategic review of interface carrier recombination in earth abundant Cu–Zn–Sn–S–Se solar cells: current challenges and future prospects , 2017 .

[6]  Martin A. Green,et al.  Sentaurus modelling of 6.9% Cu2ZnSnS4 device based on comprehensive electrical & optical characterization , 2017 .

[7]  J. Schou,et al.  Lattice-matched Cu2ZnSnS4/CeO2 solar cell with open circuit voltage boost , 2016 .

[8]  Sudip Kumar Batabyal,et al.  8.6% Efficiency CZTSSe solar cell with atomic layer deposited Zn-Sn-O buffer layer , 2016 .

[9]  M. Umehara,et al.  Photovoltaic properties of Cu2ZnSnS4 cells fabricated using ZnSnO and ZnSnO/CdS buffer layers , 2016 .

[10]  M. Green,et al.  Nanoscale Microstructure and Chemistry of Cu2ZnSnS4/CdS Interface in Kesterite Cu2ZnSnS4 Solar Cells , 2016 .

[11]  Martin A. Green,et al.  Over 9% Efficient Kesterite Cu2ZnSnS4 Solar Cell Fabricated by Using Zn1–xCdxS Buffer Layer , 2016 .

[12]  A. Polman,et al.  Photovoltaic materials: Present efficiencies and future challenges , 2016, Science.

[13]  K. Kim,et al.  Novel five-state latch using double-peak negative differential resistance and standard ternary inverter , 2016 .

[14]  D. Mitzi,et al.  Fill Factor Losses in Cu2ZnSn(SxSe1−x)4 Solar Cells: Insights from Physical and Electrical Characterization of Devices and Exfoliated Films , 2016 .

[15]  J. Olsson,et al.  Combining strong interface recombination with bandgap narrowing and short diffusion length in Cu2ZnSnS4 device modeling , 2016 .

[16]  T. Törndahl,et al.  Reduced interface recombination in Cu2ZnSnS4 solar cells with atomic layer deposition Zn1−xSnxOy buffer layers , 2015 .

[17]  I. Repins,et al.  Co-solvent enhanced zinc oxysulfide buffer layers in Kesterite copper zinc tin selenide solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[18]  Chunlei Yang,et al.  Limitation factors for the performance of kesterite Cu2ZnSnS4 thin film solar cells studied by defect characterization , 2015 .

[19]  M. Buffiere,et al.  Minimizing metastabilities in Cu(In,Ga)Se2/(CBD)Zn(S,O,OH)/i‐ZnO‐based solar cells , 2015 .

[20]  A. Tiwari,et al.  All Solution‐Processed Chalcogenide Solar Cells – from Single Functional Layers Towards a 13.8% Efficient CIGS Device , 2015 .

[21]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[22]  N. Song,et al.  Band alignments of different buffer layers (CdS, Zn(O,S), and In2S3) on Cu2ZnSnS4 , 2014 .

[23]  A. Hultqvist,et al.  Zn(O, S) Buffer Layers and Thickness Variations of CdS Buffer for Cu $_{2}$ZnSnS$_{4}$ Solar Cells , 2014, IEEE Journal of Photovoltaics.

[24]  T. Nakada,et al.  Impacts of Post-Treatments on Cell Performance of CIGS Solar Cells With Zn-Compound Buffer Layers , 2013, IEEE Journal of Photovoltaics.

[25]  Tayfun Gokmen,et al.  Band tailing and efficiency limitation in kesterite solar cells , 2013 .

[26]  M. Buffiere,et al.  Composition and structural study of solution-processed Zn(S,O,OH) thin films grown using H2O2 based deposition route , 2013 .

[27]  S. Siebentritt Why are kesterite solar cells not 20% efficient? , 2013 .

[28]  M. Buffiere,et al.  Microstructural characterization of chemical bath deposited and sputtered Zn(O,S) buffer layers , 2013 .

[29]  David B. Mitzi,et al.  Cd-free buffer layer materials on Cu2ZnSn(SxSe1−x)4: Band alignments with ZnO, ZnS, and In2S3 , 2012 .

[30]  D. Mitzi,et al.  Thermally evaporated Cu2ZnSnS4 solar cells , 2010 .

[31]  Daniel Lincot,et al.  Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments , 2010 .

[32]  D. Lincot,et al.  The Zn(S,O,OH)/ZnMgO buffer in thin‐film Cu(In,Ga)(Se,S)2‐based solar cells part II: Magnetron sputtering of the ZnMgO buffer layer for in‐line co‐evaporated Cu(In,Ga)Se2 solar cells , 2009 .

[33]  Olivier Roussel,et al.  The Zn(S,O,OH)/ZnMgO buffer in thin film Cu(In,Ga)(S,Se)2‐based solar cells part I: Fast chemical bath deposition of Zn(S,O,OH) buffer layers for industrial application on Co‐evaporated Cu(In,Ga)Se2 and electrodeposited CuIn(S,Se)2 solar cells , 2009 .

[34]  Olivier Roussel,et al.  A better understanding of the growth mechanism of Zn(S,O,OH) chemical bath deposited buffer layers for high efficiency Cu(In,Ga)(S,Se)2 solar cells , 2008 .

[35]  J. Sites,et al.  High efficiency thin-film CuIn1−xGaxSe2 photovoltaic cells using a Cd1−xZnxS buffer layer , 2006 .

[36]  K. Ramanathan,et al.  Cu(In, Ga)Se2 thin film solar cells with buffer layer alternative to CdS , 2004 .

[37]  K. Kushiya,et al.  Stabilization of PN Heterojunction between Cu(InGa)Se2 Thin-Film Absorber and ZnO Window with Zn(O, S, OH)x Buffer , 2000 .

[38]  Yasuhiko Sato,et al.  Application of Zn-Compound Buffer Layer for Polycrystalline CuInSe2-Based Thin-Film Solar Cells , 1996 .

[39]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .