THE X-RAY POLARIZATION SIGNATURE OF QUIESCENT MAGNETARS: EFFECT OF MAGNETOSPHERIC SCATTERING AND VACUUM POLARIZATION

In the magnetar model, the quiescent non-thermal soft X-ray emission from anomalous X-ray pulsars and soft gamma repeaters is thought to arise from resonant Comptonization of thermal photons by charges moving in a twisted magnetosphere. Robust inference of physical quantities from observations is difficult, because the process depends strongly on geometry, and current understanding of the magnetosphere is not very deep. The polarization of soft X-ray photons is an independent source of information, and its magnetospheric imprint remains only partially explored. In this paper, we calculate how resonant cyclotron scattering would modify the observed polarization signal relative to the surface emission, using a multidimensional Monte Carlo radiative transfer code that accounts for the gradual coupling of polarization eigenmodes as photons leave the magnetosphere. We employ a globally twisted, self-similar, force-free magnetosphere with a power-law momentum distribution, assume a blackbody spectrum for the seed photons, account for general relativistic light deflection close to the star, and assume that vacuum polarization dominates the dielectric properties of the magnetosphere. The latter is a good approximation if the pair multiplicity is not much larger than unity. Phase-averaged polarimetry is able to provide a clear signature of the magnetospheric reprocessing of thermal photons and to constrain mechanisms generating the thermal emission. Phase-resolved polarimetry, in addition, can characterize the spatial extent and magnitude of the magnetospheric twist angle at ~100 stellar radii, and discern between uni- or bidirectional particle energy distributions, almost independently of every other parameter in the system. We discuss prospects for detectability with the Gravity and Extreme Magnetism (GEMS) mission.

[1]  C. Thompson,et al.  Corona of Magnetars , 2006, astro-ph/0602417.

[2]  Christopher Thompson,et al.  Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts , 1992 .

[3]  C. Thompson,et al.  The soft gamma repeaters as very strongly magnetized neutron stars - I. Radiative mechanism for outbursts , 1995 .

[4]  W. Ho,et al.  Resonant Conversion of Photon Modes Due to Vacuum Polarization in a Magnetized Plasma: Implications for X-Ray Emission from Magnetars , 2001, astro-ph/0108127.

[5]  V. Zheleznyakov Radiation in Astrophysical Plasmas , 1996 .

[6]  University College London,et al.  X-ray spectra from magnetar candidates – I. Monte Carlo simulations in the non-relativistic regime , 2008, 0802.2647.

[7]  J. Pons,et al.  Anisotropic thermal emission from magnetized neutron stars , 2005, astro-ph/0510684.

[8]  Padova,et al.  Resonant Cyclotron Scattering in Magnetars’ Emission , 2008, 0802.1923.

[9]  C. Thompson Electrodynamics of Magnetars. IV. Self-Consistent Model of the Inner Accelerator with Implications for Pulsed Radio Emission , 2008, 0802.2572.

[10]  Jeremy S. Heyl,et al.  Polarization evolution in strong magnetic fields , 2000 .

[11]  N. Rea,et al.  X-ray spectra from magnetar candidates - III. Fitting SGR/AXP soft X-ray emission with non-relativistic Monte Carlo models , 2009, 0906.1135.

[12]  L. Angelini,et al.  The Spectrum of the 8.7 s X-ray Pulsar 4U 0142+61 , 1996 .

[13]  N. Kawai,et al.  Chandra Observation of the Anomalous X-Ray Pulsar 1E 1841-045 , 2003, astro-ph/0303597.

[14]  W. Lewin,et al.  Compact stellar X-ray sources , 2006 .

[15]  C. Thompson,et al.  Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates , 2004 .

[16]  Matthew van Adelsberg,et al.  Soft X‐ray polarization in thermal magnetar emission , 2009, 0907.3499.

[17]  Stephen L. Adler,et al.  Photon splitting and photon dispersion in a strong magnetic field , 1971 .

[18]  T. Oosterbroek,et al.  X-ray intensity-hardness correlation and deep IR observations of the anomalous X-ray pulsar 1RXS J170849-400910 , 2006, astro-ph/0610594.

[19]  Martin C. Weisskopf,et al.  On understanding the figures of merit for detection and measurement of x-ray polarization , 2010, Astronomical Telescopes + Instrumentation.

[20]  L. Stella,et al.  Spectral Modeling of the High-Energy Emission of the Magnetar 4U 0142+614 , 2007, astro-ph/0703128.

[21]  U. Geppert,et al.  Temperature distribution in magnetized neutron star crusts - II. The effect of a strong toroidal component , 2005, astro-ph/0512530.

[22]  D. Lai,et al.  Polarization evolution in a strongly magnetized vacuum: QED effect and polarized X-ray emission from magnetized neutron stars , 2009, 0903.2094.

[23]  S. Mereghetti,et al.  XMM–Newton observations of soft gamma-ray repeaters , 2006, astro-ph/0608364.

[24]  T. Guver,et al.  PHYSICAL PROPERTIES OF THE AXP 4U 0142+61 FROM X-RAY SPECTRAL ANALYSIS , 2007, 0705.3982.

[25]  B. P. Nigam,et al.  Birefringence of the Vacuum , 1964 .

[26]  P. Mészáros,et al.  High-energy radiation from magnetized neutron stars , 1992 .

[27]  J. Heyl,et al.  Changes in the X-Ray Emission from the Magnetar Candidate 1E 2259+586 during Its 2002 Outburst , 2003, astro-ph/0310575.

[28]  Matthew van Adelsberg,et al.  Atmosphere models of magnetized neutron stars: QED effects, radiation spectra and polarization signals , 2006 .

[29]  C. Thompson,et al.  The Giant Flare of 1998 August 27 from SGR 1900+14. II. Radiative Mechanism and Physical Constraints on the Source , 2001, astro-ph/0110675.

[30]  Martin C. Weisskopf,et al.  Detection of X-Ray Polarization of the Crab Nebula , 1972 .

[31]  W. Ho,et al.  Transfer of Polarized Radiation in Strongly Magnetized Plasmas and Thermal Emission from Magnetars: Effect of Vacuum Polarization , 2002, astro-ph/0211315.

[32]  W. Ho,et al.  Polarized x-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization. , 2003, Physical review letters.

[33]  Keith Jahoda,et al.  X-ray polarimetry with a micropattern TPC , 2007 .

[34]  A. Beloborodov UNTWISTING MAGNETOSPHERES OF NEUTRON STARS , 2008, 0812.4873.

[35]  Sandeep K. Patel,et al.  The prelude to and aftermath of the giant flare of 2004 December 27: persistent and pulsed X-Ray properties of SGR 1806-20 from 1993 to 2005 , 2006, astro-ph/0602402.

[36]  E. Gotthelf,et al.  The Fading of Transient Anomalous X-Ray Pulsar XTE J1810-197 , 2004, astro-ph/0409604.

[37]  Jeremy S. Heyl,et al.  The high-energy polarization-limiting radius of neutron star magnetospheres - I. Slowly rotating neutron stars , 2003, astro-ph/0302118.

[38]  D. Burton B. Schutz : a first course in general relativity, 2nd Edn. (book review) , 2010 .

[39]  C. Kouveliotou,et al.  The Magnetar Nature and the Outburst Mechanism of a Transient Anomalous X-Ray Pulsar , 2007, 0705.3713.

[40]  V. Kaspi,et al.  ON THE X-RAY SPECTRA OF ANOMALOUS X-RAY PULSARS AND SOFT GAMMA REPEATERS , 2010, 1001.3847.

[41]  V. E. Zavlin,et al.  Polarization of Thermal X-Rays from Isolated Neutron Stars , 1999, astro-ph/9909326.

[42]  S. R. Kulkarni,et al.  Electrodynamics of Magnetars: Implications for the Persistent X-Ray Emission and Spin-down of the Soft Gamma Repeaters and Anomalous X-Ray Pulsars , 2001, astro-ph/0110677.

[43]  S. Zane,et al.  Topology of magnetars external field – I. Axially symmetric fields , 2009, 0902.0720.

[44]  A. Beloborodov Gravitational Bending of Light Near Compact Objects , 2002, astro-ph/0201117.

[45]  C. Thompson,et al.  Resonant Cyclotron Scattering in Three Dimensions and the Quiescent Nonthermal X-ray Emission of Magnetars , 2006, astro-ph/0608281.

[46]  E. Costa,et al.  An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars , 2001, Nature.

[47]  Resonant cyclotron scattering and Comptonization in neutron star magnetospheres , 2005, astro-ph/0507557.

[48]  L. Stella,et al.  A UNIFIED TIMING AND SPECTRAL MODEL FOR THE ANOMALOUS X-RAY PULSARS XTE J1810−197 AND CXOU J164710.2−455216 , 2010, 1007.5466.

[49]  Christopher Thompson,et al.  The Soft Gamma Repeaters as Very Strongly Magnetized Neutron Stars. II. Quiescent Neutrino, X-Ray, and Alfvén Wave Emission , 1996 .