Low temperature processable ultra-thin WO3 Langmuir-Blodgett film as excellent hole blocking layer for enhanced performance in dye sensitized solar cell

[1]  C. Granqvist,et al.  Electrochromic WO3 thin films attain unprecedented durability by potentiostatic pretreatment , 2019, Journal of materials chemistry. A.

[2]  M. Tomellini,et al.  Single-Crystal Pt-Decorated WO3 Ultrathin Films: A Platform for Sub-ppm Hydrogen Sensing at Room Temperature , 2018, ACS applied nano materials.

[3]  H. Seo,et al.  Enhancement of photoelectrochemical water splitting response of WO3 by Means of Bi doping , 2018 .

[4]  Disordering of ultra thin WO 3 films by high-energy ions , 2017 .

[5]  Tanvi,et al.  Improved performance of dye sensitized solar cell via fine tuning of ultra-thin compact TiO2 layer , 2017 .

[6]  T. Pauporté,et al.  Insights into the Hole Blocking Layer Effect on the Perovskite Solar Cell Performance and Impedance Response , 2017 .

[7]  B. Liu,et al.  Organic Solar Cells Based on WO2.72 Nanowire Anode Buffer Layer with Enhanced Power Conversion Efficiency and Ambient Stability. , 2017, ACS applied materials & interfaces.

[8]  The Importance of Oxygen Vacancies in Nanocrystalline WO3–x Thin Films Prepared by DC Magnetron Sputtering for Achieving High Photoelectrochemical Efficiency , 2017 .

[9]  J. Bouclé,et al.  Printable WO3 electron transporting layer for perovskite solar cells: Influence on device performance and stability , 2017 .

[10]  Tatsuo Mori,et al.  Efficient planar perovskite solar cells using solution-processed amorphous WOx/fullerene C60 as electron extraction layers , 2017 .

[11]  L. Kavan,et al.  Ultrathin Buffer Layers of SnO2 by Atomic Layer Deposition: Perfect Blocking Function and Thermal Stability , 2017 .

[12]  Mingqiang Li,et al.  Preparation of ultra-thin and high-quality WO3 compact layers and comparision of WO3 and TiO2 compact layer thickness in planar perovskite solar cells , 2016 .

[13]  Tzu‐Chien Wei,et al.  Electrodeposited Ultrathin TiO2 Blocking Layers for Efficient Perovskite Solar Cells , 2015, Scientific Reports.

[14]  J. Maçaira,et al.  Role of temperature in the recombination reaction on dye-sensitized solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[15]  Su‐Ting Han,et al.  Enhanced self-assembled monolayer treatment on polymeric gate dielectrics with ultraviolet/ozone assistance in organic thin film transistors , 2015 .

[16]  P. Yan,et al.  Crystallographic dependence of photocatalytic activity of WO3 thin films prepared by molecular beam epitaxy. , 2015, Physical chemistry chemical physics : PCCP.

[17]  Ahmad R. Kirmani,et al.  Highly efficient perovskite solar cells based on a nanostructured WO3–TiO2 core–shell electron transporting material , 2015 .

[18]  S. Mali,et al.  Langmuir–Blodgett self organized nanocrystalline tungsten oxide thin films for electrochromic performance , 2015 .

[19]  Qingshun Dong,et al.  Low-Temperature and Solution-Processed Amorphous WO(x) as Electron-Selective Layer for Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[20]  Han Song,et al.  Optical fiber hydrogen sensor based on evaporated Pt/WO3 film , 2015 .

[21]  G. Xu,et al.  Tuning the electronic and structural properties of WO3 nanocrystals by varying transition metal tungstate precursors , 2014 .

[22]  P. Licence,et al.  Quaternary ammonium and phosphonium based ionic liquids: a comparison of common anions. , 2014, Physical chemistry chemical physics : PCCP.

[23]  L. Kavan,et al.  Sol-gel titanium dioxide blocking layers for dye-sensitized solar cells: electrochemical characterization. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[24]  Higher Open Circuit Voltage and Reduced UV-Induced Reverse Current in ZnO-Based Solar Cells by a Chemically Modified Blocking Layer , 2014 .

[25]  D. K. Aswal,et al.  Co-sensitization of N719 and RhCL dyes on carboxylic acid treated TiO2 for enhancement of light harvesting and reduced recombination , 2013 .

[26]  Jin Zhai,et al.  Electrochromic films with a stacked structure of WO3 nanosheets , 2013 .

[27]  Chang Ming Li,et al.  Interface Functionalization of Photoelectrodes with Graphene for High Performance Dye‐Sensitized Solar Cells , 2012 .

[28]  Hee-jee Kim,et al.  The blocking effect of charge recombination by sputtered and acid-treated ZnO thin film in dye-sensitized solar cells , 2012 .

[29]  W. Tang,et al.  Transition Metal Oxide Work Functions: The Influence of Cation Oxidation State and Oxygen Vacancies , 2012 .

[30]  T. Sajavaara,et al.  Atomic Layer Deposition of WO3 Thin Films using W(CO)6 and O3 Precursors , 2012 .

[31]  Yongfang Li,et al.  Solution-Processed Tungsten Oxide as an Effective Anode Buffer Layer for High-Performance Polymer Solar Cells , 2012 .

[32]  C. Sorrell,et al.  Electrodeposited nanostructured WO3 thin films for photoelectrochemical applications , 2012 .

[33]  M. Engelhard,et al.  Correlation between surface chemistry, density, and band gap in nanocrystalline WO3 thin films. , 2012, ACS applied materials & interfaces.

[34]  John R. Reynolds,et al.  High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells , 2011, Nature Photonics.

[35]  P. Rakkwamsuk,et al.  Effect of heat treatment on electrical properties of fluorine doped tin dioxide films prepared by ultrasonic spray pyrolysis technique , 2012 .

[36]  Chung-Chieh Chang,et al.  Hydrogen incorporation in gasochromic coloration of sol–gel WO3 thin films , 2011 .

[37]  J. A. Heredia-Guerrero,et al.  Structure and Chemical State of Octadecylamine Self-Assembled Monolayers on Mica , 2011 .

[38]  Nikos Konofaos,et al.  Tungsten oxides as interfacial layers for improved performance in hybrid optoelectronic devices , 2011 .

[39]  Arnan Mitchell,et al.  Nanostructured Tungsten Oxide – Properties, Synthesis, and Applications , 2011 .

[40]  Fan Zhang,et al.  Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. , 2011, Angewandte Chemie.

[41]  Y. Yun,et al.  Spectroscopic analysis of tungsten oxide thin films , 2010 .

[42]  Anders Hagfeldt,et al.  Dye-sensitized solar cells. , 2010, Chemical reviews.

[43]  A. Duţă,et al.  Tailoring WO3 thin layers using spray pyrolysis technique , 2008 .

[44]  Yasushi Sato,et al.  Transparent conductive Nb-doped TiO2 films deposited by direct-current magnetron sputtering using a TiO2-x target , 2008 .

[45]  P. Patil,et al.  Electrochromic characteristics of fibrous reticulated WO3 thin films prepared by pulsed spray pyrolysis technique , 2007 .

[46]  K. Jiang,et al.  Fabrication and characterization of thin Nb2O5 blocking layers for ionic liquid-based dye-sensitized solar cells , 2007 .

[47]  C. Betty,et al.  Room temperature gas sensitivity of ultrathin SnO2 films prepared from Langmuir-Blodgett film precursors , 2006 .

[48]  R C Ewing,et al.  Structural stability and phase transitions in WO3 thin films. , 2006, The journal of physical chemistry. B.

[49]  I. Mihailescu,et al.  Structural and optical characterization of WO3 thin films for gas sensor applications , 2005 .

[50]  D. C. Trivedi,et al.  Preparation and characterization of spray deposited n-type WO3 thin films for electrochromic devices , 2004 .

[51]  M. Grätzel Dye-sensitized solar cells , 2003 .

[52]  Warren B. Cross,et al.  Aerosol assisted chemical vapour deposition of tungsten oxide films from polyoxotungstate precursors: active photocatalysts. , 2003, Chemical communications.

[53]  H. Hosono,et al.  Carrier generation in highly oriented WO3 films by proton or helium implantation , 2002 .

[54]  Francis Levy,et al.  Electrical and optical properties of TiO2 anatase thin films , 1994 .

[55]  J. Peeling,et al.  An experimental and theoretical investigation of the core level spectra of a series of amino acids, dipeptides and polypeptides. , 1976, Biochimica et biophysica acta.