High-performance inertial confinement fusion target implosions on OMEGA

The Omega Laser Facility is used to study inertial confinement fusion (ICF) concepts. This paper describes progress in direct-drive central hot-spot (CHS) ICF, shock ignition (SI) and fast ignition (FI) since the 2008 IAEA FEC conference. CHS cryogenic deuterium–tritium (DT) target implosions on OMEGA have produced the highest DT areal densities yet measured in ICF implosions (~300 mg cm−2). Integrated FI experiments have shown a significant increase in neutron yield caused by an appropriately timed high-intensity, high-energy laser pulse.

[1]  P. B. Radha,et al.  Demonstration of the highest deuterium-tritium areal density using multiple-picket cryogenic designs on OMEGA. , 2010, Physical review letters.

[2]  Karen S. Anderson,et al.  Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement , 2010 .

[3]  Kokichi Tanaka,et al.  Initial cone-in-shell fast-ignition experiments on OMEGAa) , 2011 .

[4]  L. Perkins,et al.  Shock ignition of thermonuclear fuel with high areal density. , 2006, Physical review letters.

[5]  Chihiro Yamanaka,et al.  Inertial confinement fusion: The quest for ignition and energy gain using indirect drive , 1999 .

[6]  Jonathan D. Zuegel,et al.  High-energy petawatt capability for the omega laser , 2005 .

[7]  Samuel A. Letzring,et al.  Initial performance results of the OMEGA laser system , 1997 .

[8]  John Lindl,et al.  A generalized scaling law for the ignition energy of inertial confinement fusion capsules , 2000 .

[9]  E. Moses,et al.  The National Ignition Facility , 2004 .

[10]  N. Miyanaga,et al.  Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition , 2001, Nature.

[11]  William J. Hogan,et al.  The National Ignition Facility , 2001 .

[12]  Timothy W. Collins,et al.  Shock-tuned cryogenic-deuterium-tritium implosion performance on Omega , 2010 .

[13]  Riccardo Betti,et al.  Hydrodynamic relations for direct-drive fast-ignition and conventional inertial confinement fusion implosions , 2007 .

[14]  Jay D. Salmonson,et al.  Rev3 Update of Requirements for NIF Ignition Targets , 2009 .

[15]  M. J. Edwards,et al.  Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies , 2009, Science.

[16]  Edward I. Moses,et al.  The National Ignition Facility: Laser Performance and First Experiments , 2005 .

[17]  J. D. Kilkenny,et al.  Polar direct drive on the National Ignition Facility , 2004 .

[18]  P. B. Radha,et al.  High-areal-density fuel assembly in direct-drive cryogenic implosions. , 2008, Physical review letters.

[19]  W. Theobald Integrated Fast-Ignition Core-Heating Experiments on OMEGA , 2010 .

[20]  P. B. Radha,et al.  Advanced-ignition-concept exploration on OMEGA , 2009 .

[21]  Michael D. Perry,et al.  Ignition and high gain with ultrapowerful lasers , 1994 .

[22]  S. Skupsky,et al.  Progress in direct-drive inertial confinement fusion , 2004 .

[23]  H. Shiraga,et al.  Nuclear fusion: Fast heating scalable to laser fusion ignition , 2002, Nature.

[24]  J. A. Frenje,et al.  First measurements of the absolute neutron spectrum using the magnetic recoil spectrometer at OMEGA (invited). , 2008, The Review of scientific instruments.

[25]  L. Perkins,et al.  Initial experiments on the shock-ignition inertial confinement fusion concept , 2008 .

[26]  O. L. Landen,et al.  Demonstration of the shock-timing technique for ignition targets on the National Ignition Facility , 2009 .

[27]  J. D. Kilkenny,et al.  Progress in direct-drive inertial confinement fusion research at the laboratory for laser energetics , 2006 .