Ramsey-Bordé Matter-Wave Interferometry for Laser Frequency Stabilization at 10^{-16} Frequency Instability and Below.

We demonstrate Ramsey-Bordé (RB) atom interferometry for high performance laser stabilization with fractional frequency instability <2×10^{-16} for timescales between 10 and 1000s. The RB spectroscopy laser interrogates two counterpropagating ^{40}Ca beams on the ^{1}S_{0}-^{3}P_{1} transition at 657 nm, yielding 1.6 kHz linewidth interference fringes. Fluorescence detection of the excited state population is performed on the (4s4p) ^{3}P_{1}-(4p^{2}) ^{3}P_{0} transition at 431 nm. Minimal thermal shielding and no vibration isolation are used. These stability results surpass performance from other thermal atomic or molecular systems by 1 to 2 orders of magnitude, and further improvements look feasible.

[1]  Fritz Riehle,et al.  Towards a Re-definition of the Second Based on Optical Atomic Clocks , 2015, 1501.02068.

[2]  Fritz Riehle,et al.  Improvement of the fractional uncertainty of a neutral-atom calcium optical frequency standard to 2×10-14 , 2003 .

[3]  Yanfei Wang,et al.  Superradiant Laser with Ultra-Narrow Linewidth Based on 40 Ca , 2012 .

[4]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[5]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[6]  Till Rosenband,et al.  Laser-Frequency Stabilization Based on Steady-State Spectral-Hole Burning in Eu(3+)∶Y(2)SiO(5). , 2015, Physical review letters.

[7]  N. Ashby,et al.  A null test of general relativity based on a long-term comparison of atomic transition frequencies , 2018, Nature Physics.

[8]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[9]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[10]  Kenji Numata,et al.  Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. , 2004, Physical review letters.

[11]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[12]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[13]  M. Schioppo,et al.  Atomic clock performance beyond the geodetic limit , 2018, 1807.11282.

[14]  J. Khoury,et al.  Atom-interferometry constraints on dark energy , 2015, Science.

[15]  C Sanner,et al.  Single-Ion Atomic Clock with 3×10(-18) Systematic Uncertainty. , 2016, Physical review letters.

[16]  T. Legero,et al.  1.5 μm lasers with sub 10 mHz linewidth , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[17]  A. Ludlow,et al.  Making optical atomic clocks more stable with 10-16-level laser stabilization , 2011, 1101.1351.

[18]  D. Wineland,et al.  Optical Clocks and Relativity , 2010, Science.

[19]  Andrew G. Glen,et al.  APPL , 2001 .

[20]  Scott A. Diddams,et al.  Single-branch Er:fiber frequency comb for precision optical metrology with 10 −18 fractional instability , 2017 .

[21]  C. Bordé Atomic interferometry with internal state labelling , 1989 .

[22]  Thomas Bräutigam I, J , 1887, Klassiker des deutschsprachigen Dokumentarfilms.

[23]  D. Budker,et al.  Probing New Long-Range Interactions by Isotope Shift Spectroscopy. , 2017, Physical review letters.

[24]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[25]  M. Kasevich,et al.  Quantum superposition at the half-metre scale , 2015, Nature.

[26]  Thomas Legero,et al.  8  ×  10⁻¹⁷ fractional laser frequency instability with a long room-temperature cavity. , 2015, Optics letters.

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  M. Pospelov,et al.  Hunting for topological dark matter with atomic clocks , 2013, Nature Physics.

[29]  W. Ertmer,et al.  A high-resolution Ramsey-Bordé spectrometer for optical clocks based on cold Mg atoms , 2005 .

[30]  D. J. Glaze,et al.  Resolution of photon‐recoil structure of the 6573‐Å calcium line in an atomic beam with optical Ramsey fringes , 1979 .

[31]  Duo Pan,et al.  Miniaturized calcium beam optical frequency standard using fully-sealed vacuum tube with 10-15 instability. , 2017, Optics express.

[32]  R. L. Barger Influence of second-order Doppler effect on optical Ramsey fringe profiles. , 1981, Optics letters.

[33]  Stephen Webster,et al.  Force-insensitive optical cavity. , 2011, Optics letters.

[34]  Sandberg,et al.  Shelved optical electron amplifier: Observation of quantum jumps. , 1986, Physical review letters.

[35]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[36]  J. Thomsen,et al.  Towards passive and active laser stabilization using cavity-enhanced atomic interaction , 2017 .

[37]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[38]  B. Dubetsky,et al.  Atom interferometry in the presence of an external test mass , 2016, 1601.00355.

[39]  Andre N. Luiten,et al.  Fractional frequency instability in the 10 −14 range with a thermal beam optical frequency reference , 2010 .

[40]  M. Merzougui,et al.  Exploring gravity with the MIGA large scale atom interferometer , 2017, Scientific Reports.

[41]  A. Morinaga,et al.  Evaluation of the optical phase shift in a Ca Ramsey fringe stabilized optical frequency standard by means of laser-beam reversal , 1994 .

[42]  Manoj Das,et al.  Frequency ratio of Yb and Sr clocks with 5 × 10 −17 uncertainty at 150 seconds averaging time , 2016 .

[43]  著者なし 16 , 1871, Animals at the End of the World.

[44]  R. Ciuryło,et al.  Experimental constraint on dark matter detection with optical atomic clocks , 2016, Nature Astronomy.

[45]  Shubhashish Datta,et al.  Photonic microwave signals with zeptosecond-level absolute timing noise , 2017 .

[46]  G. Scoles,et al.  Optical Ramsey fringes with traveling waves , 1984 .

[47]  John L. Hall,et al.  Saturated Absorption with Spatially Separated Laser Fields: Observation of Optical , 1977 .

[48]  Wei Teufelsdreck,et al.  Chin , 2021, COMARCA PERDIDA.

[49]  P. Zoller,et al.  Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism , 2014, Science.

[50]  James C. Bergquist,et al.  Cavity-stabilized laser with acceleration sensitivity below 10-12/g-1 | NIST , 2012, 1301.0022.

[51]  V. Flambaum,et al.  Enhanced effects of variation of the fundamental constants in laser interferometers and application to dark matter detection , 2015, 1511.00447.

[52]  Wei Zhang,et al.  Crystalline optical cavity at 4  K with thermal-noise-limited instability and ultralow drift , 2018, Optica.

[53]  D. F. Kimball,et al.  Search for New Physics with Atoms and Molecules , 2017, 1710.01833.

[54]  友紀子 中川 SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.

[55]  V. Flambaum,et al.  Searching for dark matter and variation of fundamental constants with laser and maser interferometry. , 2014, Physical review letters.

[56]  Jun Ye,et al.  Frequency measurements of superradiance from the strontium clock transition , 2017, 1711.10407.

[57]  Zach DeVito,et al.  Opt , 2017 .

[58]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.