Stability and Electronic Properties of Atomistically-Engineered 2D Boron Sheets

First principles calculations based on generalized-gradient approximation to density functional theory are performed to study structural and electronic properties of the 2D sheets consisting of the elemental boron. The results find that the boron sheet can be stable and can possess metallic or semiconducting character depending on its atomistic configuration. The unique features present in the electronic properties of the buckled {1212} and reconstructed {1221} sheets would lead to a significant variation on electronic and mechanical properties of the corresponding single-walled boron nanotubes.

[1]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[2]  A theoretical study of vibrational properties of neutral and cationic B12 clusters , 2005 .

[3]  K. Lau,et al.  A theoretical study of electronic and vibrational properties of neutral, cationic, and anionic B24 clusters , 2005 .

[4]  Jun Li,et al.  Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity , 2003, Nature materials.

[5]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[6]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[7]  Toshimasa Ishida,et al.  Aromaticity of planar boron clusters confirmed. , 2005, Journal of the American Chemical Society.

[8]  M. Sakata,et al.  PECULIAR COVALENT BONDS IN ALPHA -RHOMBOHEDRAL BORON , 1999 .

[9]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[10]  K. Lau,et al.  Theoretical study of electron transport in boron nanotubes , 2006 .

[11]  Angel Rubio,et al.  Ab initio study of B32 clusters: competition between spherical, quasiplanar and tubular isomers , 1999 .

[12]  J. Weare,et al.  Instability of the B12 icosahedral cluster: Rearrangement to a lower energy structure , 1991 .

[13]  Angel Rubio,et al.  New boron based nanostructured materials , 1999 .

[14]  J. Joannopoulos,et al.  Electronic and mechanical properties of planar and tubular boron structures , 2005 .

[15]  Alexander Quandt,et al.  Broad boron sheets and boron nanotubes: An ab initio study of structural, electronic, and mechanical properties , 2006 .

[16]  E. Muetterties The chemistry of boron and its compounds , 1967 .

[17]  S. Bulusu,et al.  Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  E. Jayasree,et al.  Analogies between boron and carbon. , 2003, Accounts of chemical research.

[19]  G. K. Smelser The structure of the eye , 1961 .

[20]  K. Shirai ELASTIC PROPERTIES AND THE MECHANICAL STABILITY OF ICOSAHEDRAL BORON CRYSTALS , 1997 .

[21]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[22]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[23]  J. Gilman,et al.  Nanotechnology , 2001 .

[24]  Andrew C. Pineda,et al.  First-principles study of the stability and electronic properties of sheets and nanotubes of elemental boron , 2006 .

[25]  Rodney S. Ruoff,et al.  Crystalline Boron Nanoribbons: Synthesis and Characterization , 2004 .

[26]  I. Boustani,et al.  Systematic ab initio investigation of bare boron clusters:mDetermination of the geometryand electronic structures of B n (n=2–14) , 1997 .

[27]  Yimei Zhu,et al.  Synthesis of Pure Boron Single-Wall Nanotubes , 2004 .

[28]  J. M. Ugalde,et al.  The Curiously Stable Cluster and its Neutral and Anionic Counterparts: The Advantages of Planarity† , 2000 .

[29]  I. Boustani Systematic LSD investigation on cationic boron clusters: B n+(n 2–14) , 1994 .

[30]  Rongxiu Zhu,et al.  Density functional theory study on the geometrical and electronic structures of a new thinnest boron nanotube , 2006 .

[31]  N. Vast,et al.  LATTICE DYNAMICS OF ICOSAHEDRAL ALPHA -BORON UNDER PRESSURE , 1997 .

[32]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[33]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[34]  Constricted boron nanotubes , 2004, cond-mat/0410761.

[35]  Patrick W. Fowler,et al.  Structure and Bonding in B6 - and B6: Planarity and Antiaromaticity , 2003 .

[36]  A. Quandt,et al.  Nanotubules of bare boron clusters: Ab initio and density functional study , 1997 .

[37]  J. Aihara B13+Is Highly Aromatic , 2001 .

[38]  C. Kittel Introduction to solid state physics , 1954 .

[39]  I. Boustani,et al.  Ab initiodensity functional investigation ofB24clusters: Rings, tubes, planes, and cages , 2003, physics/0305103.

[40]  J. A. Alonso,et al.  Density functional calculations of hydrogen adsorption on boron nanotubes and boron sheets , 2006 .

[41]  Earl L. Muetterties,et al.  Boron Hydride Chemistry , 1975 .