Examination of spinal column vibrations: a non-invasive approach

SummaryAccelerations of vertebrae during whole-body vibration (WBV) are used in occupational biomechanics for the prediction of internal stress. To avoid invasive techniques, a method for the calculation of bone accelerations was developed using measurements on the skin. The soft tissue between spinous processes L3 and T5 and miniature accelerometers stuck to the skin over them was modelled by a simple Kelvin element, whose parameters i.e. angular natural frequencyωn4 and critical dampingζ describe an approximate transfer function between the bone (input) and the skin surface (output). The parameters were determined from free damped oscillations of the accelerometer-skin complex in the Z-axis, and depended significantly on the factors “subject” and “point of measurement”. In one subject, the time courses of bone accelerations during sinusoidal WBV (4.5 and 8 Hz; 1.5 m·s−2 RMS) were calculated using separate transfer functions for each of 11 different spinal levels. Since the output signals on the skin were non-sinusoidal, the skin accelerations had to be treated with an inverse transfer function in the frequency domain. A comparison of accelerations measured on the skin and predicted for the bone mainly indicates that absolute peak values of bone accelerations are smaller and occur earlier. Both kinds of acceleration hint at differences in WBV-induced internal stress within the spine.

[1]  J. Lafferty Analytical model of the fatigue characteristics of bone. , 1978, Aviation, space, and environmental medicine.

[2]  M. Artmann,et al.  [Transmissionfunction of the acceleration from the os ilium to an outside used acceleration sensor (author's transl)]. , 1976, Biomedizinische Technik. Biomedical engineering.

[3]  E. Franke,et al.  Mechanical impedance of the surface of the human body. , 1951, Journal of applied physiology.

[4]  M M Panjabi,et al.  In vivo measurements of spinal column vibrations. , 1986, The Journal of bone and joint surgery. American volume.

[5]  M. Artmann,et al.  Das Verhalten der Beschleunigungsübertragung vom Beckenkamm auf einen äußeren Beschleunigungsaufnehmer beim Menschen - Transmissionfunction of the acceleration from the os ilium to an outside used acceleration sensor , 1976 .

[6]  Jachen Denoth,et al.  Forces and torques during sports activities with high acceleration , 1985 .

[7]  A Barneveld,et al.  A technique to quantify skin displacement in the walking horse. , 1986, Journal of biomechanics.

[8]  H. Oestreicher Field and Impedance of an Oscillating Sphere in a Viscoelastic Medium with an Application to Biophysics , 1951 .

[9]  Ralph Blüthner,et al.  Electromyography in Back Research — Assessment of Static and Dynamic Conditions , 1985 .

[10]  H. Oestreicher,et al.  Physics of vibrations in living tissues. , 1952, Journal of applied physiology.

[11]  Barbara Hinz,et al.  Effects of sinusoidal whole-body vibration on the lumbar spine: the stress-strain relationship , 1986, International archives of occupational and environmental health.

[12]  W. Lange,et al.  Relativbewegungen benachbarter Wirbel unter Schwingungsbelastung , 1965, Internationale Zeitschrift für angewandte Physiologie einschließlich Arbeitsphysiologie.

[13]  Lafferty Jf Analytical model of the fatigue characteristics of bone. , 1978 .

[14]  B Hinz,et al.  The nonlinearity of the human body's dynamic response during sinusoidal whole body vibration. , 1987, Industrial health.

[15]  H. Seidel,et al.  Long-term effects of whole-body vibration: a critical survey of the literature , 1986, International archives of occupational and environmental health.

[16]  D. Anton Occupational biomechanics , 1986 .

[17]  H. Dupuis,et al.  Über die Beanspruchung der Wirbelsäule unter dem Einfluß sinusförmiger und stochastischer Schwingungen , 1966, Internationale Zeitschrift für angewandte Physiologie einschließlich Arbeitsphysiologie.