Why can Classical Schwarz Methods Applied to Hyperbolic Systems Converge even Without Overlap
暂无分享,去创建一个
Martin J. Gander | Luca Gerardo-Giorda | Victorita Dolean | M. Gander | L. Gerardo-Giorda | V. Dolean
[1] Frédéric Nataf,et al. The optimized order 2 method : Application to convection-diffusion problems , 2001, Future Gener. Comput. Syst..
[2] Hongkai Zhao,et al. Absorbing boundary conditions for domain decomposition , 1998 .
[3] I. N. Sneddon,et al. Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves , 1999 .
[4] Jinchao Xu,et al. Some Nonoverlapping Domain Decomposition Methods , 1998, SIAM Rev..
[5] Frédéric Nataf,et al. FACTORIZATION OF THE CONVECTION-DIFFUSION OPERATOR AND THE SCHWARZ ALGORITHM , 1995 .
[6] Martin J. Gander,et al. Optimized Schwarz methods for Helmholtz Problems , 2001 .
[7] Alfio Quarteroni,et al. Domain Decomposition Methods for Systems of Conservation Laws: Spectral Collocation Approximations , 1990, SIAM J. Sci. Comput..
[8] Stéphane Lanteri,et al. Convergence analysis of additive Schwarz for the Euler equations , 2004 .
[9] Stéphane Lanteri,et al. Construction of interface conditions for solving the compressible Euler equations by non‐overlapping domain decomposition methods , 2002 .
[10] Ezio Faccioli,et al. 2d and 3D elastic wave propagation by a pseudo-spectral domain decomposition method , 1997 .
[11] Martin J. Gander,et al. Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation , 2003, SIAM J. Numer. Anal..
[12] Stéphane Lanteri,et al. Convergence Analysis of a Schwarz Type Domain Decomposition Method for the Solution of the Euler Equations , 2000 .
[13] O. Widlund. Domain Decomposition Algorithms , 1993 .
[14] Martin J. Gander,et al. Optimized Schwarz Methods without Overlap for the Helmholtz Equation , 2002, SIAM J. Sci. Comput..
[15] Patrick Joly,et al. A new interface condition in the non-overlapping domain decomposition method for the Maxwell equations , 1997 .
[16] Frédéric Nataf,et al. Symmetrized Method with Optimized Second-Order Conditions for the Helmholtz Equation , 1998 .
[17] Ezio Faccioli,et al. Spectral-domain decomposition methods for the solution of acoustic and elastic wave equations , 1996 .
[18] Laurence Halpern,et al. Méthodes de relaxation d’ondes pour l’équation de la chaleur en dimension 1 Optimized Schwarz Waveform Relaxation for the one-dimensional heat equation , 2008 .
[19] J. Nédélec. Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .
[20] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..
[21] B. Després,et al. Décomposition de domaine et problème de Helmholtz , 1990 .
[22] F. Magoulès,et al. An optimized Schwarz method with two‐sided Robin transmission conditions for the Helmholtz equation , 2007 .
[23] Martin J. Gander,et al. Optimized Schwarz Methods , 2006, SIAM J. Numer. Anal..
[24] Wei-Pai Tang,et al. An Overdetermined Schwarz Alternating Method , 1996, SIAM J. Sci. Comput..
[25] Ivan Sofronov,et al. Non-reflecting Inflow and Outflow in a Wind Tunnel for Transonic Time-Accurate Simulation , 1998 .
[26] Andrea Toselli,et al. Domain decomposition methods : algorithms and theory , 2005 .
[27] Luca Gerardo-Giorda,et al. New Nonoverlapping Domain Decomposition Methods for the Harmonic Maxwell System , 2006, SIAM J. Sci. Comput..
[28] Wei-Pai Tang,et al. Generalized Schwarz Splittings , 1992, SIAM J. Sci. Comput..
[29] Thomas Hagstrom,et al. Numerical Experiments on a Domain Decomposition Algorithm for Nonlinear Elliptic Boundary Value Problems , 1988 .
[30] Barry F. Smith,et al. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .
[31] Frédéric Nataf,et al. Méthode de décomposition de domaine pour l'équation d'advection-diffusion , 1991 .
[32] Barry Smith,et al. Domain Decomposition Methods for Partial Differential Equations , 1997 .
[33] A. Quarteroni,et al. Numerical Approximation of Partial Differential Equations , 2008 .
[34] Qingping Deng. Timely Communicaton: An Analysis for a Nonoverlapping Domain Decomposition Iterative Procedure , 1997, SIAM J. Sci. Comput..