Why can Classical Schwarz Methods Applied to Hyperbolic Systems Converge even Without Overlap

Over the last two decades, classical Schwarz methods have been extended to systems of hyperbolic partial differential equations, and it was observed that the classical Schwarz method can be convergent even without overlap in certain cases. This is in strong contrast to the behavior of classical Schwarz methods applied to elliptic problems, for which overlap is essential for convergence. Over the last decade, optimized Schwarz methods have been developed for elliptic partial differential equations. These methods use more effective transmission conditions between subdomains, and are also convergent without overlap for elliptic problems. We show here why the classical Schwarz method applied to the hyperbolic problem converges without overlap for the Cauchy-Riemann equations and Maxwell's equations. The reason is that the method is equivalent to a simple optimized Schwarz method for an equivalent elliptic problem. Using this link, we show how to develop more efficient Schwarz methods than the classical ones for the Cauchy-Riemann and Maxwell's equations. We illustrate our findings with numerical results.

[1]  Frédéric Nataf,et al.  The optimized order 2 method : Application to convection-diffusion problems , 2001, Future Gener. Comput. Syst..

[2]  Hongkai Zhao,et al.  Absorbing boundary conditions for domain decomposition , 1998 .

[3]  I. N. Sneddon,et al.  Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves , 1999 .

[4]  Jinchao Xu,et al.  Some Nonoverlapping Domain Decomposition Methods , 1998, SIAM Rev..

[5]  Frédéric Nataf,et al.  FACTORIZATION OF THE CONVECTION-DIFFUSION OPERATOR AND THE SCHWARZ ALGORITHM , 1995 .

[6]  Martin J. Gander,et al.  Optimized Schwarz methods for Helmholtz Problems , 2001 .

[7]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Systems of Conservation Laws: Spectral Collocation Approximations , 1990, SIAM J. Sci. Comput..

[8]  Stéphane Lanteri,et al.  Convergence analysis of additive Schwarz for the Euler equations , 2004 .

[9]  Stéphane Lanteri,et al.  Construction of interface conditions for solving the compressible Euler equations by non‐overlapping domain decomposition methods , 2002 .

[10]  Ezio Faccioli,et al.  2d and 3D elastic wave propagation by a pseudo-spectral domain decomposition method , 1997 .

[11]  Martin J. Gander,et al.  Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation , 2003, SIAM J. Numer. Anal..

[12]  Stéphane Lanteri,et al.  Convergence Analysis of a Schwarz Type Domain Decomposition Method for the Solution of the Euler Equations , 2000 .

[13]  O. Widlund Domain Decomposition Algorithms , 1993 .

[14]  Martin J. Gander,et al.  Optimized Schwarz Methods without Overlap for the Helmholtz Equation , 2002, SIAM J. Sci. Comput..

[15]  Patrick Joly,et al.  A new interface condition in the non-overlapping domain decomposition method for the Maxwell equations , 1997 .

[16]  Frédéric Nataf,et al.  Symmetrized Method with Optimized Second-Order Conditions for the Helmholtz Equation , 1998 .

[17]  Ezio Faccioli,et al.  Spectral-domain decomposition methods for the solution of acoustic and elastic wave equations , 1996 .

[18]  Laurence Halpern,et al.  Méthodes de relaxation d’ondes pour l’équation de la chaleur en dimension 1 Optimized Schwarz Waveform Relaxation for the one-dimensional heat equation , 2008 .

[19]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[20]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[21]  B. Després,et al.  Décomposition de domaine et problème de Helmholtz , 1990 .

[22]  F. Magoulès,et al.  An optimized Schwarz method with two‐sided Robin transmission conditions for the Helmholtz equation , 2007 .

[23]  Martin J. Gander,et al.  Optimized Schwarz Methods , 2006, SIAM J. Numer. Anal..

[24]  Wei-Pai Tang,et al.  An Overdetermined Schwarz Alternating Method , 1996, SIAM J. Sci. Comput..

[25]  Ivan Sofronov,et al.  Non-reflecting Inflow and Outflow in a Wind Tunnel for Transonic Time-Accurate Simulation , 1998 .

[26]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[27]  Luca Gerardo-Giorda,et al.  New Nonoverlapping Domain Decomposition Methods for the Harmonic Maxwell System , 2006, SIAM J. Sci. Comput..

[28]  Wei-Pai Tang,et al.  Generalized Schwarz Splittings , 1992, SIAM J. Sci. Comput..

[29]  Thomas Hagstrom,et al.  Numerical Experiments on a Domain Decomposition Algorithm for Nonlinear Elliptic Boundary Value Problems , 1988 .

[30]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[31]  Frédéric Nataf,et al.  Méthode de décomposition de domaine pour l'équation d'advection-diffusion , 1991 .

[32]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[33]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[34]  Qingping Deng Timely Communicaton: An Analysis for a Nonoverlapping Domain Decomposition Iterative Procedure , 1997, SIAM J. Sci. Comput..