Stable Model Predictive Strategy for Rendezvous Hovering Phases Allowing for Control Saturation

This paper presents a model predictive control strategy for the spacecraft rendezvous hovering phases. Using a sequence of impulsive velocity changes, the spacecraft is controlled to reach and rema...

[1]  Antonio Pedro Aguiar,et al.  An Optimization-Based Framework for Impulsive Control Systems , 2015 .

[2]  Georgia Deaconu On the trajectory design, guidance and control for spacecraft rendezvous and proximity operations. (Pas de titre en français) , 2013 .

[3]  Eduardo F. Camacho,et al.  Chance-constrained model predictive control for spacecraft rendezvous with disturbance estimation , 2012 .

[4]  Jonathan P. How,et al.  Spacecraft trajectory planning with avoidance constraints using mixed-integer linear programming , 2002 .

[5]  N. Z. Shor,et al.  The Subgradient Method , 1985 .

[6]  Adrian S. Lewis,et al.  Nonsmooth optimization via quasi-Newton methods , 2012, Mathematical Programming.

[7]  Jonathan P. How,et al.  Analysis of the impact of sensor noise on formation flying control , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[8]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[9]  Jonathan P. How,et al.  Safe Trajectories for Autonomous Rendezvous of Spacecraft , 2006 .

[10]  Luca Zaccarian,et al.  A hybrid control framework for impulsive control of satellite rendezvous , 2016, 2016 American Control Conference (ACC).

[11]  F. Camps,et al.  Embedding a SDP-based control algorithm for the orbital rendezvous hovering phases , 2018, 2018 25th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS).

[12]  Ilya Kolmanovsky,et al.  Analysis and Experimentation of Model Predictive Control for Spacecraft Rendezvous and Proximity Operations with Multiple Obstacle Avoidance , 2016 .

[13]  Eduardo F. Camacho,et al.  Robust tube-based MPC for tracking of constrained linear systems with additive disturbances , 2010 .

[14]  Paulo Ricardo Arantes Gilz A Matlab®/Simulink® non-linear simulator for orbital spacecraft rendezvous applications. , 2016 .

[15]  Martin Bohner,et al.  Impulsive differential equations: Periodic solutions and applications , 2015, Autom..

[16]  Jonathan P. How,et al.  Robust variable horizon model predictive control for vehicle maneuvering , 2006 .

[17]  Jonathan P. How,et al.  Co‐ordination and control of distributed spacecraft systems using convex optimization techniques , 2002 .

[18]  Richard G. Cobb,et al.  Fuel-Optimal Maneuvers for Constrained Relative Satellite Orbits , 2009 .

[19]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .

[20]  Antonio Ferramosca,et al.  MPC with State Window Target Control in Linear Impulsive Systems , 2015 .

[21]  K. Yamanaka,et al.  New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit , 2002 .

[22]  Elisa Capello,et al.  "Flyable” Guidance and Control Algorithms for Orbital Rendezvous Maneuver , 2018 .

[23]  Fredrik Nilsson,et al.  PRISMA : an in-orbit test bed for guidance, navigation, and control experiments , 2009 .

[24]  Franziska Wulf,et al.  Minimization Methods For Non Differentiable Functions , 2016 .

[25]  S. D’Amico,et al.  Generalised multi-impulsive manoeuvres for optimum spacecraft rendezvous in near-circular orbit , 2015 .

[26]  J. Tschauner Elliptic orbit rendezvous. , 1967 .

[27]  Ilya Kolmanovsky,et al.  Model Predictive Control approach for guidance of spacecraft rendezvous and proximity maneuvering , 2012 .

[28]  Georgia Deaconu,et al.  Minimizing the Effects of Navigation Uncertainties on the Spacecraft Rendezvous Precision , 2014 .

[29]  Robin Larsson,et al.  Collision avoidance maneuver planning with robust optimization , 2008 .

[30]  Guang Yang,et al.  Nonlinear dynamics and output feedback control of multiple spacecraft in elliptical orbits , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[31]  Jonathan P. How,et al.  8 Cooperative Spacecraft Formation Flying: Model Predictive Control with Open-and Closed-Loop Robustness , 2006 .

[32]  Peng Li,et al.  Line-of-sight nonlinear model predictive control for autonomous rendezvous in elliptical orbit , 2017 .

[33]  David Q. Mayne,et al.  Robust model predictive control using tubes , 2004, Autom..

[34]  Yurii Nesterov,et al.  Squared Functional Systems and Optimization Problems , 2000 .

[35]  Rohan C. Shekhar,et al.  Optimal constraint tightening policies for robust variable horizon model predictive control , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[36]  Edward N. Hartley,et al.  Predictive control for spacecraft rendezvous in an elliptical orbit using an FPGA , 2013, 2013 European Control Conference (ECC).

[37]  Edward N. Hartley,et al.  Field programmable gate array based predictive control system for spacecraft rendezvous in elliptical orbits , 2015 .

[38]  Christophe Louembet,et al.  Model predictive control for rendezvous hovering phases based on a novel description of constrained trajectories , 2017 .

[39]  J. How,et al.  Relative Dynamics and Control of Spacecraft Formations in Eccentric Orbits , 2000 .

[40]  H. Schaub,et al.  Impulsive Feedback Control to Establish Specific Mean Orbit Elements of Spacecraft Formations , 2001 .

[41]  Kamesh Subbarao,et al.  Adaptive Output Feedback Control for Spacecraft Rendezvous and Docking Under Measurement Uncertainty , 2006 .

[42]  Ricardo Ramírez-Mendoza,et al.  Robust control applied towards Rendezvous and Docking , 2009, 2009 European Control Conference (ECC).

[43]  M. J. Walker A set of modified equinoctial orbit elements , 1985 .

[44]  B. Borchers A C library for semidefinite programming , 1999 .

[45]  Gabriella Gaias,et al.  Impulsive Maneuvers for Formation Reconfiguration Using Relative Orbital Elements , 2015 .

[46]  Edward N. Hartley A tutorial on model predictive control for spacecraft rendezvous , 2015, 2015 European Control Conference (ECC).

[47]  A. Richards,et al.  Robust Receding Horizon Control using Generalized Constraint Tightening , 2007, 2007 American Control Conference.

[48]  Georgia Deaconu,et al.  Designing Continuously Constrained Spacecraft Relative Trajectories for Proximity Operations , 2015 .

[49]  Jonathan P. How,et al.  Formation control strategies for a separated spacecraft interferometer , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[50]  Denis Arzelier,et al.  Robust Rendezvous Planning Under Maneuver Execution Errors , 2015 .

[51]  W. H. Clohessy,et al.  Terminal Guidance System for Satellite Rendezvous , 2012 .