COMPACT FOURTH-ORDER FINITE DIFFERENCE SCHEMES FOR HELMHOLTZ EQUATION WITH HIGH WAVE NUMBERS

在这篇论文,当相应波浪数字大时,二个第四顺序的精确紧缩的差别计划为在二种空间尺寸解决 Helmholtz 方程被介绍。主要想法是发源并且学习谁的一个第四顺序的精确紧缩的差别计划也就是,带截断术语 O (h4) 术语,独立于波浪数字和 Helmholtz 方程的答案。紧缩的计划的集中性质被分析并且解决结果的实现基于快速傅里叶变换,途径被考虑的线性代数学的系统。数字结果被介绍,它支持我们的理论预言。

[1]  Seongjai Kim,et al.  Compact schemes for acoustics in the frequency domain , 2003 .

[2]  Yongbin Ge,et al.  A fourth‐order compact finite difference scheme for the steady stream function–vorticity formulation of the Navier–Stokes/Boussinesq equations , 2003 .

[3]  Farzad Mashayek,et al.  A compact finite difference method on staggered grid for Navier–Stokes flows , 2006 .

[4]  Stefan A. Sauter,et al.  Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..

[5]  B. Fornberg,et al.  A compact fourth‐order finite difference scheme for the steady incompressible Navier‐Stokes equations , 1995 .

[6]  E. Turkel,et al.  Operated by Universities Space Research AssociationAccurate Finite Difference Methods for Time-harmonic Wave Propagation* , 1994 .

[7]  Weiwei Sun,et al.  A Fast Algorithm for the Electromagnetic Scattering from a Large Cavity , 2005, SIAM J. Sci. Comput..

[8]  Jie Shen,et al.  Spectral Approximation of the Helmholtz Equation with High Wave Numbers , 2005, SIAM J. Numer. Anal..

[9]  Y. V. S. S. Sanyasiraju,et al.  Higher order semi compact scheme to solve transient incompressible Navier-Stokes equations , 2005 .

[10]  Jie Shen,et al.  Spectral and High-Order Methods with Applications , 2006 .

[11]  D. Xiu,et al.  An efficient spectral method for acoustic scattering from rough surfaces , 2007 .

[12]  W. Spotz High-Order Compact Finite Difference Schemes for Computational Mechanics , 1995 .

[13]  E. Erturk,et al.  Fourth‐order compact formulation of Navier–Stokes equations and driven cavity flow at high Reynolds numbers , 2004, ArXiv.