Integrated flexible chalcogenide glass photonic devices

Photonic integration on thinflexible plastic substrates is important for emerging applications ranging from the realization of flexible interconnects to conformal sensors applied to the skin. Such devices are traditionally fabricated using pattern transfer, which is complicated and has limited integration capacity. Here, we report a convenient monolithic approach to realize flexible, integrated high-index-contrast chalcogenide glass photonic devices. By developing local neutral axis designs and suitable fabrication techniques, we realize a suite of photonic devices including waveguides, microdisk resonators, add–drop filters and photonic crystals that have excellent optical performance and mechanical flexibility, enabling repeated bending down to sub-millimetre radii without measurable performance degradation. The approach offers a facile fabrication route for three-dimensional high-index-contrast photonics that are difficult to create using traditional methods.

[1]  Michal Lipson,et al.  Scalable 3D dense integration of photonics on bulk silicon. , 2011, Optics express.

[2]  Michel Couzi,et al.  Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S , 2006 .

[3]  H. Miyazaki,et al.  Microassembly of semiconductor three-dimensional photonic crystals , 2003, Nature materials.

[4]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[5]  M. Haney,et al.  A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects , 2013, Journal of Lightwave Technology.

[6]  Zhigang Suo,et al.  Inorganic islands on a highly stretchable polyimide substrate , 2009 .

[7]  Raeed H. Chowdhury,et al.  Epidermal Electronics , 2011, Science.

[8]  J. Vanfleteren,et al.  Highly Reliable Flexible Active Optical Links , 2010, IEEE Photonics Technology Letters.

[9]  Sunghoon Song,et al.  Flexible molecular-scale electronic devices. , 2012, Nature nanotechnology.

[10]  Kim A. Winick,et al.  Design and fabrication of low-loss hydrogenated amorphous silicon overlay DBR for glass waveguide devices , 2002, SPIE OPTO.

[11]  A. Yariv Optical electronics in modern communications , 1997 .

[12]  Ying Zhang,et al.  Fabrication of hierarchical pillar arrays from thermoplastic and photosensitive SU-8. , 2010, Small.

[13]  M. Smit,et al.  Adhesive Bonding of InP ∕ InGaAsP Dies to Processed Silicon-On-Insulator Wafers using DVS-bis-Benzocyclobutene , 2006 .

[14]  Heung Cho Ko,et al.  A hemispherical electronic eye camera based on compressible silicon optoelectronics , 2008, Nature.

[15]  A. Leinse,et al.  Ultra-low-loss high-aspect-ratio Si3N4 waveguides. , 2011, Optics express.

[16]  Weidong Zhou,et al.  Fast Flexible Electronics Based on Printable Thin Mono-Crystalline Silicon , 2011 .

[17]  O. Shapira,et al.  Towards multimaterial multifunctional fibres that see, hear, sense and communicate. , 2007, Nature materials.

[18]  Yonggang Huang,et al.  Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays , 2009, Science.

[19]  Dennis W Prather,et al.  Nanomembrane transfer process for intricate photonic device applications. , 2011, Optics letters.

[20]  Design and fabrication of low-loss hydrogenated amorphous silicon overlay DBR for glass waveguide devices , 2002 .

[21]  B. Jalali,et al.  Multilayer 3-D Photonics in Silicon , 2007, OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference.

[22]  Zhenqiang Ma,et al.  An Electronic Second Skin , 2011, Science.

[23]  Kathleen Richardson,et al.  Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing. , 2008, Optics letters.

[24]  Mo Li,et al.  Flexible and tunable silicon photonic circuits on plastic substrates , 2012, Scientific Reports.

[25]  Sangsig Kim,et al.  Stable Bending Performance of Flexible Organic Light-Emitting Diodes Using IZO Anodes , 2013, Scientific Reports.

[26]  O. Schwelb,et al.  Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview , 2004, Journal of Lightwave Technology.

[27]  Katsuyoshi Suzuki,et al.  Realization of three-dimensional guiding of photons in photonic crystals , 2013, Nature Photonics.

[28]  Steven G. Johnson,et al.  Perturbation theory for Maxwell's equations with shifting material boundaries. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Richard A. Soref,et al.  Large-area InP-based crystalline nanomembrane flexible photodetectors , 2010 .

[30]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[31]  S. Xiao,et al.  Modeling and measurement of losses in silicon-on-insulator resonators and bends. , 2007, Optics express.

[32]  E. Menard,et al.  High-speed mechanically flexible single-crystal silicon thin-film transistors on plastic substrates , 2006, IEEE Electron Device Letters.

[33]  Ray G. DeCorby,et al.  Robust and Flexible Free‐Standing All‐Dielectric Omnidirectional Reflectors , 2007 .

[34]  K. K. Srivastava,et al.  Linear and nonlinear optical changes in amorphous As2Se3 thin film upon UV exposure , 2011 .

[35]  Steve Madden,et al.  Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices , 2005 .

[36]  Chun-Hsien Chou,et al.  High-Performance Flexible Waveguiding Photovoltaics , 2013, Scientific Reports.

[37]  Kathleen Richardson,et al.  Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow. , 2010, Optics express.

[38]  Jurgen Michel,et al.  Impedance matching vertical optical waveguide couplers for dense high index contrast circuits. , 2008, Optics express.

[39]  Jessica G. Sandland Sputtered silicon oxynitride for microphotonics : a materials study , 2004 .

[40]  Kathleen Richardson,et al.  Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides. , 2007, Optics express.

[41]  C. Zysset,et al.  Flexible a-IGZO TFT amplifier fabricated on a free standing polyimide foil operating at 1.2 MHz while bent to a radius of 5 mm , 2012, 2012 International Electron Devices Meeting.

[42]  Ray T. Chen,et al.  Stamp printing of silicon-nanomembrane-based photonic devices onto flexible substrates with a suspended configuration. , 2012, Optics letters.

[43]  Weidong Zhou,et al.  Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes , 2009 .

[44]  J. David Musgraves,et al.  Integrated chalcogenide waveguide resonators for mid-IR sensing: Leveraging material properties to meet fabrication challenges , 2011 .

[45]  Jian Wang,et al.  Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing. , 2012, Optics express.