Feedback Phosphorylation of an RGS Protein by MAP Kinase in Yeast*

Regulators of G protein signaling (RGS proteins) are well known to accelerate G protein GTPase activity in vitro and to promote G protein desensitization in vivo. Less is known about how RGS proteins are themselves regulated. To address this question we purified the RGS in yeast, Sst2, and used electrospray ionization mass spectrometry to identify post-translational modifications. This analysis revealed that Sst2 is phosphorylated at Ser-539 and that phosphorylation occurs in response to pheromone stimulation. Ser-539 lies within a consensus mitogen-activated protein (MAP) kinase phosphorylation site, Pro-X-Ser-Pro. Phosphorylation is blocked by mutations in the MAP kinase genes (FUS3, KSS1), as well as by mutations in components needed for MAP kinase activation (STE11, STE7, STE4, STE18). Phosphorylation is also blocked by replacing Ser-539 with Ala, Asp, or Glu (but not Thr). These point mutations do not alter pheromone sensitivity, as determined by growth arrest and reporter transcription assays. However, phosphorylation appears to slow the rate of Sst2 degradation. These findings indicate that the G protein-regulated MAP kinase in yeast can act as a feedback regulator of Sst2, itself a regulator of G protein signaling.

[1]  R. Lefkowitz,et al.  Feedback Regulation of β-Arrestin1 Function by Extracellular Signal-regulated Kinases* , 1999, The Journal of Biological Chemistry.

[2]  T. Benzing,et al.  Interaction between RGS7 and polycystin. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[3]  H. Dohlman,et al.  Second Site Suppressor Mutations of a GTPase-deficient G-Protein α-Subunit , 1998, The Journal of Biological Chemistry.

[4]  R. Aebersold,et al.  Optimization of solid phase microextraction ‐ capillary zone electrophoresis ‐ mass spectrometry for high sensitivity protein identification , 1998, Electrophoresis.

[5]  G F Sprague,et al.  Control of MAP kinase signaling specificity or how not to go HOG wild. , 1998, Genes & development.

[6]  Robert J. Lefkowitz,et al.  G Protein-coupled Receptors , 1998, The Journal of Biological Chemistry.

[7]  R. Neubig,et al.  A Point Mutation in Gαo and Gαi1Blocks Interaction with Regulator of G Protein Signaling Proteins* , 1998, The Journal of Biological Chemistry.

[8]  P B Sigler,et al.  Sst2 is a GTPase-activating protein for Gpa1: purification and characterization of a cognate RGS-Galpha protein pair in yeast. , 1998, Biochemistry.

[9]  H. Dohlman,et al.  Selective Uncoupling of RGS Action by a Single Point Mutation in the G Protein α-Subunit* , 1998, The Journal of Biological Chemistry.

[10]  A. Gilman,et al.  Mammalian RGS Proteins: Barbarians at the Gate* , 1998, The Journal of Biological Chemistry.

[11]  Gerald R. Fink,et al.  MAP Kinases with Distinct Inhibitory Functions Impart Signaling Specificity during Yeast Differentiation , 1997, Cell.

[12]  L. Bardwell,et al.  Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous- growth signalling pathway , 1997, Nature.

[13]  S. Sprang,et al.  Structure of RGS4 Bound to AlF4 −-Activated Giα1: Stabilization of the Transition State for GTP Hydrolysis , 1997, Cell.

[14]  J. Thorner,et al.  RGS Proteins and Signaling by Heterotrimeric G Proteins* , 1997, The Journal of Biological Chemistry.

[15]  L. Bardwell,et al.  Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. , 1996, Genes & development.

[16]  R. Aebersold,et al.  Protein identification by solid phase microextraction—capillary zone electrophoresis—microelectrospray—tandem mass spectrometry , 1996, Nature Biotechnology.

[17]  J. Thorner,et al.  Sst2, a negative regulator of pheromone signaling in the yeast Saccharomyces cerevisiae: expression, localization, and genetic interaction and physical association with Gpa1 (the G-protein alpha subunit) , 1996, Molecular and cellular biology.

[18]  H. Dohlman,et al.  Inhibition of G-protein signaling by dominant gain-of-function mutations in Sst2p, a pheromone desensitization factor in Saccharomyces cerevisiae , 1995, Molecular and cellular biology.

[19]  J. Cook,et al.  Phosphorylation and localization of Kss1, a MAP kinase of the Saccharomyces cerevisiae pheromone response pathway. , 1995, Molecular biology of the cell.

[20]  E. Krebs,et al.  The MAPK signaling cascade , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[21]  J. Yates,et al.  Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. , 1995, Analytical chemistry.

[22]  G. Hannon,et al.  p21-containing cyclin kinases exist in both active and inactive states. , 1994, Genes & development.

[23]  J. Thorner,et al.  Mutational activation of the STE5 gene product bypasses the requirement for G protein beta and gamma subunits in the yeast pheromone response pathway , 1994, Molecular and cellular biology.

[24]  B. Futcher,et al.  Far1 and Fus3 Link the Mating Pheromone Signal Transduction Pathway to Three G1-Phase Cdc28 Kinase Complexes , 1993, Molecular and cellular biology.

[25]  Gustav Ammerer,et al.  FAR1 links the signal transduction pathway to the cell cycle machinery in yeast , 1993, Cell.

[26]  E. Elion,et al.  FUS3 phosphorylates multiple components of the mating signal transduction cascade: evidence for STE12 and FAR1. , 1993, Molecular biology of the cell.

[27]  B. Errede,et al.  Pheromone-induced signal transduction in Saccharomyces cerevisiae requires the sequential function of three protein kinases , 1993, Molecular and cellular biology.

[28]  R. W. Davis,et al.  A dominant truncation allele identifies a gene, STE20, that encodes a putative protein kinase necessary for mating in Saccharomyces cerevisiae. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[29]  K. Nasmyth,et al.  Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. , 1992, Genes & development.

[30]  J. Thorner,et al.  A presumptive helicase (MOT1 gene product) affects gene expression and is required for viability in the yeast Saccharomyces cerevisiae , 1992, Molecular and cellular biology.

[31]  J. Kurjan,et al.  Pheromonal regulation and sequence of the Saccharomyces cerevisiae SST2 gene: a model for desensitization to pheromone. , 1987, Molecular and cellular biology.

[32]  R. K. Chan,et al.  Isolation and genetic analysis of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and alpha factor pheromones , 1982, Molecular and cellular biology.

[33]  K. Lynch Identification and expression of G protein-coupled receptors , 1998 .

[34]  G. Sprague,,et al.  Assay of yeast mating reaction. , 1991, Methods in enzymology.