Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces

We establish transport relations for integrals over evolving fluid interfaces. These relations make it possible to localize integral balance laws over non-material interfaces separating fluid phases and, therefore, obtain associated interface conditions in differential form.

[1]  D. N. Riahi,et al.  Computational studies of the effect of rotation on convection during protein crystallization , 2003 .

[2]  Michael R. Kessler,et al.  Cure kinetics of the ring‐opening metathesis polymerization of dicyclopentadiene , 2002 .

[3]  R. Panat,et al.  Rumpling instability in thermal barrier systems under isothermal conditions in vacuum , 2005 .

[4]  T.G.M. van de Ven,et al.  Interfacial transport processes and rheology , 1993 .

[5]  Z. C. Liu,et al.  Observation of vortex packets in direct numerical simulation of fully turbulent channel flow , 2002 .

[6]  H. Stone A simple derivation of the time‐dependent convective‐diffusion equation for surfactant transport along a deforming interface , 1990 .

[7]  E. Fried,et al.  Normal-stress differences and the detection of disclinations in nematic elastomers , 2002 .

[8]  Sulin Zhang,et al.  Influence of surface morphology on the adhesion strength of epoxy–aluminum interfaces , 2003 .

[9]  Hassan Aref,et al.  The development of chaotic advection , 2002 .

[10]  Ricardo Estrada,et al.  Non-classical derivation of the transport theorems for wave fronts , 1991 .

[11]  D. N. Riahi Effects of Rotation on Convection in a Porous Layer During Alloy Solidification , 2002 .

[12]  Allen M. Waxman,et al.  Dynamics of a couple-stress fluid membrane , 1984 .

[13]  D. Stewart,et al.  Spinning instability of gaseous detonations , 2001, Journal of Fluid Mechanics.

[14]  K. Hsia,et al.  Locking of electric-field-induced non-180° domain switching and phase transition in ferroelectric materials upon cyclic electric fatigue , 2003 .

[15]  E. Fried The configurational and standard force balances are not always statements of a single law , 2003 .

[16]  Sulin Zhang,et al.  Bond coat surface rumpling in thermal barrier coatings , 2003 .

[17]  D. N. Riahi Nonlinear steady convection in rotating mushy layers , 2003, Journal of Fluid Mechanics.

[18]  R. Adrian,et al.  Reynolds number scaling of flow in a stirred tank with Rushton turbine. Part II — Eigen decomposition of fluctuation , 2005 .

[19]  Daniel A. Tortorelli,et al.  Geometrically-based Consequences of Internal Constraints , 2003 .

[20]  R. Adrian,et al.  The velocity and acceleration signatures of small-scale vortices in turbulent channel flow , 2002 .

[21]  N. Sottos,et al.  In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene , 2003 .

[22]  Nancy R. Sottos,et al.  Fatigue crack propagation in microcapsule-toughened epoxy , 2006 .

[23]  J. Dolbow,et al.  Point Defects in Nematic Gels: The Case for Hedgehogs , 2005 .

[24]  J. C. Slattery,et al.  Momentum, Energy and Mass Transfer in Continua , 1976 .

[25]  Hassan Aref,et al.  Topological fluid mechanics of point vortex motions , 1999 .

[26]  Flow Instabilities in a Horizontal Dendrite Layer Rotating about an Inclined Axis , 2005 .

[27]  S. Balachandar,et al.  Spanwise growth of vortex structure in wall turbulence , 2001 .

[28]  Elastic waves in cylindrical waveguides of arbitrary cross section , 2001 .

[29]  F. Bombardelli,et al.  Scaling and similarity in rough channel flows. , 2001, Physical review letters.

[30]  K. Hsia,et al.  Experimental investigation of the bond-coat rumpling instability under isothermal and cyclic thermal histories in thermal barrier systems , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  D. N. Riahi,et al.  On similarity waves in compacting media , 2003 .

[32]  N. Sottos,et al.  Microcapsule induced toughening in a self-healing polymer composite , 2004 .

[33]  K. Hsia,et al.  In Situ X-Ray Diffraction Study of Electric-Field-Induced Domain Switching and Phase Transition in PZT-5H , 2004 .

[34]  D. Carlson,et al.  The totality of soft-states in a neo-classical nematic elastomer , 2002 .

[35]  Towards the miniaturization of explosive technology , 2002 .

[36]  Sigurd B. Angenent,et al.  Multiphase thermomechanics with interfacial structure 2. Evolution of an isothermal interface , 1989 .

[37]  David S. Rumschitzki,et al.  On the surfactant mass balance at a deforming fluid interface , 1996 .

[38]  E. Fried,et al.  Disclinated states in nematic elastomers , 2002 .

[39]  E. Fried,et al.  Prediction of disclinations in nematic elastomers , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  H. Brenner,et al.  A micromechanical investigation of interfacial transport processes. I. Interfacial conservation equations , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[41]  Asymptotic theory of evolution and failure of self-sustained detonations , 2005, Journal of Fluid Mechanics.

[42]  D. Cahill,et al.  Evolution of surface waviness in thin films via volume and surface diffusion , 2005 .

[43]  S. Balachandar,et al.  Effect of turbulence on the drag and lift of a particle , 2003 .

[44]  Two-phase densification of cohesive granular aggregates. , 2001, Physical review letters.

[45]  J. Dolbow,et al.  Chemically induced swelling of hydrogels , 2004 .

[46]  D. Stewart,et al.  Theory of direct initiation of gaseous detonations and comparison with experiment , 2004 .

[47]  D. Tortorelli,et al.  On Internal Constraints in Continuum Mechanics , 2002 .

[48]  John C. Slattery,et al.  Interfacial Transport Phenomena , 1990 .

[49]  M. Gurtin,et al.  A unified treatment of evolving interfaces accounting for small deformations and atomic transport: grain-boundaries, phase transitions, epitaxy , 2003 .

[50]  G. Gioia,et al.  Structure and kinematics in dense free-surface granular flow. , 2003, Physical review letters.

[51]  E. Fried,et al.  Striping of nematic elastomers , 2002 .

[52]  Ronald Adrian Information and the Study of Turbulence and Complex Flow , 2002 .

[53]  D. Scott Stewart,et al.  On the dynamics of self-sustained one-dimensional detonations: A numerical study in the shock-attached frame , 2004 .

[54]  Ali Borhan,et al.  Effect of surfactants on the motion of drops through circular tubes , 1992 .

[55]  Daniel N. Riahi On Stationary and Oscillatory Modes of Flow Instability in a Rotating Porous Layer during Alloy Solidification , 2003 .

[56]  S. Balachandar,et al.  Response of the wake of an isolated particle to an isotropic turbulent flow , 2004, Journal of Fluid Mechanics.

[57]  F. Durst,et al.  THE STABILITY OF EVAPORATING THIN LIQUID FILMS IN THE PRESENCE OF SURFACTANT. I. LUBRICATION APPROXIMATION AND LINEAR ANALYSIS , 1998 .

[58]  Osborne Reynolds,et al.  Papers on Mechanical and Physical Subjects , 2009, Nature.

[59]  D. N. Riahi Effect of permeability on steady flow in a dendrite layer , 2006 .

[60]  W. Hayes The vorticity jump across a gasdynamic discontinuity , 1957, Journal of Fluid Mechanics.

[61]  Zenon Mróz,et al.  Time derivatives of integrals and functionals defined on varying volume and surface domains , 1986 .

[62]  D. N. Riahi On flow of binary alloys during crystal growth , 2003 .

[63]  Morton E. Gurtin,et al.  Multiphase thermomechanics with interfacial structure , 1990 .

[64]  M. Gurtin,et al.  A void-based description of compaction and segregation in flowing granular materials , 2004 .

[65]  H. Aref A transformation of the point vortex equations , 2001 .

[66]  P. Sofronis,et al.  Calculation of a constitutive potential for isostatic powder compaction , 2002 .

[67]  C. Hirsch The Basic Equations of Fluid Dynamics , 2007 .

[68]  Morton E. Gurtin,et al.  General dynamical sharp-interface conditions for phase transformations in viscous heat-conducting fluids , 2007, Journal of Fluid Mechanics.

[69]  D. N. Riahi On nonlinear convection in mushy layers Part 1. Oscillatory modes of convection , 2002, Journal of Fluid Mechanics.

[70]  Morton E. Gurtin,et al.  Sharp-Interface Nematic–Isotropic Phase Transitions without Flow , 2004 .

[71]  S. Balachandar,et al.  Reynolds number scaling of flow in a Rushton turbine stirred tank. Part I - Mean flow, circular jet and tip vortex scaling , 2005 .

[72]  Haimin Yao,et al.  Journal of the Mechanics and Physics of Solids , 2014 .

[73]  Howard A. Stone,et al.  The effect of surfactant on the transient motion of Newtonian drops , 1993 .

[74]  Morton E. Gurtin,et al.  A transport theorem for moving interfaces , 1989 .

[75]  K. Hsia,et al.  Interfacial cracks between piezoelectric and elastic materials under in-plane electric loading , 2003 .

[76]  Ronald Adrian,et al.  Measurement of instantaneous Eulerian acceleration fields by particle image accelerometry: method and accuracy , 2002 .

[77]  S. Balachandar Response to Comments on “Reynolds number scaling of flow in a Rushton turbine stirred tank. Part I—Mean flow, circular jet and tip vortex scaling” by H. S. Yoon, D. F. Hill, S. Balachandar, R. J. Adrian and M. Y. Ha , 2006 .

[78]  D. N. Riahi,et al.  Effect of rotation on surface tension driven flow during protein crystallization , 2003 .

[79]  L. G. Leal,et al.  The effects of surfactants on drop deformation and breakup , 1990, Journal of Fluid Mechanics.

[80]  D. N. Riahi On nonlinear convection in mushy layers. Part 2. Mixed oscillatory and stationary modes of convection , 2004, Journal of Fluid Mechanics.

[81]  T. Thomas Extended Compatibility Conditions for the Study of Surfaces of Discontinuity in Continuum Mechanics , 1957 .

[82]  I. M. Robertson,et al.  Atomistic scale experimental observations and micromechanical/continuum models for the effect of hydrogen on the mechanical behavior of metals , 2001 .

[83]  N. Sottos,et al.  Fracture testing of a self-healing polymer composite , 2002 .