Adaptive Drift Analysis

We show that the (1+1) evolutionary algorithm using an arbitrary mutation rate p = c/n, c a constant, finds the optimum of any n-bit pseudo-Boolean linear function f in expected time Θ(n log n). Since previous work shows that universal drift functions cannot exist for c larger than a certain constant, we define drift functions depending on p and f. This seems to be the first time in the theory of evolutionary algorithms that drift functions are used that take into account the particular problem instance.

[1]  Xin Yao,et al.  Drift analysis and average time complexity of evolutionary algorithms , 2001, Artif. Intell..

[2]  Jens Jägersküpper,et al.  Combining Markov-Chain Analysis and Drift Analysis , 2011, Algorithmica.

[3]  Frank Neumann,et al.  Rigorous analyses of fitness-proportional selection for optimizing linear functions , 2008, GECCO '08.

[4]  Ingo Wegener,et al.  Evolutionary Algorithms and the Maximum Matching Problem , 2003, STACS.

[5]  Benjamin Doerr,et al.  Multiplicative drift analysis , 2010, GECCO.

[6]  Thomas Jansen,et al.  Optimizing Monotone Functions Can Be Difficult , 2010, PPSN.

[7]  R. A. Doney,et al.  4. Probability and Random Processes , 1993 .

[8]  Thomas Jansen,et al.  On the analysis of the (1+1) evolutionary algorithm , 2002, Theor. Comput. Sci..

[9]  Xin Yao,et al.  A study of drift analysis for estimating computation time of evolutionary algorithms , 2004, Natural Computing.

[10]  Benjamin Doerr,et al.  Drift analysis and linear functions revisited , 2010, IEEE Congress on Evolutionary Computation.

[11]  Leslie Ann Goldberg,et al.  Drift Analysis with Tail Bounds , 2010, PPSN.

[12]  B. Hajek Hitting-time and occupation-time bounds implied by drift analysis with applications , 1982, Advances in Applied Probability.

[13]  Xin Yao,et al.  Erratum to: Drift analysis and average time complexity of evolutionary algorithms [Artificial Intelligence 127 (2001) 57-85] , 2002, Artif. Intell..

[14]  Pietro Simone Oliveto,et al.  Simplified Drift Analysis for Proving Lower Bounds in Evolutionary Computation , 2008, Algorithmica.

[15]  Catherine S. Greenhill,et al.  Surveys in Combinatorics, 1999: Random Walks on Combinatorial Objects , 1999 .

[16]  Ingo Wegener,et al.  Methods for the Analysis of Evolutionary Algorithms on Pseudo-Boolean Functions , 2003 .

[17]  Pietro Simone Oliveto,et al.  Theoretical analysis of fitness-proportional selection: landscapes and efficiency , 2009, GECCO.

[18]  Per Kristian Lehre,et al.  On the effect of populations in evolutionary multi-objective optimization , 2006, GECCO.

[19]  Ingo Wegener,et al.  Randomized local search, evolutionary algorithms, and the minimum spanning tree problem , 2004, Theor. Comput. Sci..

[20]  Ingo Wegener,et al.  A Rigorous Complexity Analysis of the (1 + 1) Evolutionary Algorithm for Separable Functions with Boolean Inputs , 1998, Evolutionary Computation.

[21]  Thomas Bäck,et al.  Optimal Mutation Rates in Genetic Search , 1993, ICGA.

[22]  Frank Neumann,et al.  Computing single source shortest paths using single-objective fitness , 2009, FOGA '09.