Spectral synthesis in sobolev spaces, and uniqueness of solutions of the Dirichlet problem

By analogy with the classical spectral synthesis of Beurling (see e.g. [20]) we say tha t sets K with the approximation property in the theorem admit (m, q)-synthesis. Thus, in contrast to the situation in harmonic analysis, the conclusion here is tha t all closed sets in R ~ admit (m~ q)-synthesis, at least i / q > 2 1 / d . Among the consequences we mention the following uniqueness theorem for the Dirichlet problem. This is in fact an equivalent formulation of the result in the case q = 2. By way of illustration we only formulate the theorem in the simplest case. Generalizations to more general elliptic equations are immediate. See T. Kolsrud [21] for an extension to situations where u is defined only in G.

[1]  M. Hestenes,et al.  Extension of the range of a differentiable function , 1941 .

[2]  J. Deny Les potentiels d'energie finie , 1950 .

[3]  J. Deny,et al.  Les espaces du type de Beppo Levi , 1954 .

[4]  A. Beurling,et al.  DIRICHLET SPACES. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Ivo Babuška,et al.  Устойчивость областей определения по отношению к основным задачам теории дифференциальных уравнеий в частных производных, главным образом в связи с теорией упругости, I , 1961 .

[6]  H. Wallin Continuous functions and potential theory , 1963 .

[7]  S. L. Sobolev,et al.  Applications of functional analysis in mathematical physics , 1963 .

[8]  J. Deny Théorie de la capacité dans les espaces fonctionnels , 1964 .

[9]  Y. Katznelson An Introduction to Harmonic Analysis: Interpolation of Linear Operators , 1968 .

[10]  Yu. G. Reshetnyak The concept of capacity in the theory of functions with generalized derivatives , 1969 .

[11]  N. Meyers A Theory of Capacities for Potentials of Functions in Lebesgue Classes. , 1970 .

[12]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[13]  B. Fuglede The quasi topology associated with a countably subadditive set function , 1971 .

[14]  John C. Polking Approximation in L p by Solutions of Elliptic Partial Differential Equations , 1972 .

[15]  T. Bagby,et al.  Quasi topologies and rational approximation , 1972 .

[16]  N. Meyers,et al.  Thinness and Wiener Criteria for Non-Linear Potentials , 1972 .

[17]  L. Hedberg On certain convolution inequalities , 1972 .

[18]  V. Maz'ya,et al.  NON-LINEAR POTENTIAL THEORY , 1972 .

[19]  D. Adams Maximal operators and capacity , 1972 .

[20]  L. Hedberg,et al.  Approximation in the mean by analytic functions , 1972 .

[21]  L. Hedberg Non-linear potentials and approximation in the mean by analytic functions , 1972 .

[22]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[23]  D. Adams,et al.  The equivalence of two definitions of capacity , 1973 .

[24]  L. Hedberg,et al.  Approximation in the mean by solutions of elliptic equations , 1973 .

[25]  V. G. Maz’ja ON (p, l)-CAPACITY, IMBEDDING THEOREMS, AND THE SPECTRUM OF A SELFADJOINT ELLIPTIC OPERATOR , 1973 .

[26]  N. Meyers Continuity properties of potentials , 1975 .

[27]  Bessel potentials and extension of continuous functions on compact sets , 1975 .

[28]  V. Maz'ya Removable singularities of bounded solutions of quasilinear elliptic equations of any order , 1975 .

[29]  D. Adams On the existence of capacitary strong type estimates inRn , 1976 .

[30]  G. Wildenhain,et al.  Methoden der Potentialtheorie für elliptische Differentialgleichungen beliebiger Ordnung , 1977 .

[31]  N. Meyers,et al.  Integral inequalities of Poincaré and Wirtinger type , 1978 .

[32]  Lars Inge Hedberg Two approximation problems in function spaces , 1978 .

[33]  J. Webb Boundary Value Problems for Strongly Nonlinear Elliptic Equations , 1980 .

[34]  T. Kolsrud A uniqueness theorem for higher order elliptic partial differential equations. , 1982 .