Non-invasive assessment of vessel morphology and function in tumors by magnetic resonance imaging

The switch to an angiogenic phenotype is an important precondition for tumor growth, invasion and spread. Since newly formed vessels are characterized by structural, functional and molecular abnormalities, they offer promising targets for tumor diagnosis and therapy. Previous studies indicate that MRI is valuable to assess vessel morphology and function. It can be used to distinguish between benign and malignant lesions and to improve delineation of proliferating areas within heterogeneous tumors. In addition, tracer kinetic analysis of contrast-enhanced image series allows the estimation of well-defined physiological parameters such as blood volume, blood flow and vessel permeability. Frequently, changes of these parameters during cytostatic, anti-angiogenic and radiation therapy precede tumor volume reduction. Moreover, target-specific MRI techniques can be used to elucidate the expression of angiogenic markers at the molecular level. This review summarizes strategies for non-invasive characterization of tumor vascularization by functional and molecular MRI, hereby introducing representative preclinical and clinical applications.

[1]  M. Brechbiel,et al.  3D MR angiography of intratumoral vasculature using a novel macromolecular MR contrast agent , 2001, Magnetic resonance in medicine.

[2]  M V Knopp,et al.  Angiogenic activity of cervical carcinoma: assessment by functional magnetic resonance imaging-based parameters and a histomorphological approach in correlation with disease outcome. , 1998, Clinical cancer research : an official journal of the American Association for Cancer Research.

[3]  B. Rosen,et al.  High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results , 1996, Magnetic resonance in medicine.

[4]  M. Neeman,et al.  In vivo prediction of vascular susceptibility to vascular susceptibility endothelial growth factor withdrawal: magnetic resonance imaging of C6 rat glioma in nude mice. , 1999, Cancer research.

[5]  M. Essig,et al.  Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is predictive of local tumor control after radiation therapy. , 2001, International journal of radiation oncology, biology, physics.

[6]  A. Ruddell,et al.  Dynamic Contrast-Enhanced Magnetic Resonance Imaging of , 2008 .

[7]  J. Folkman,et al.  Angiogenesis Inhibitors: A New Class of Drugs , 2003, Cancer biology & therapy.

[8]  A Heerschap,et al.  Fast dynamic gadolinium‐enhanced MR imaging of urinary bladder and prostate cancer , 1999, Journal of magnetic resonance imaging : JMRI.

[9]  J. Folkman,et al.  Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. , 2000, Cancer research.

[10]  B. Rosen,et al.  High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis , 1996, Magnetic resonance in medicine.

[11]  Napoleone Ferrara,et al.  Angiogenesis as a therapeutic target , 2005, Nature.

[12]  L D Buadu,et al.  Breast lesions: correlation of contrast medium enhancement patterns on MR images with histopathologic findings and tumor angiogenesis. , 1996, Radiology.

[13]  M. Neeman,et al.  The antiangiogenic agent linomide inhibits the growth rate of von Hippel-Lindau paraganglioma xenografts to mice. , 1999, Clinical cancer research : an official journal of the American Association for Cancer Research.

[14]  P. Tofts,et al.  Measurement of the blood‐brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts , 1991, Magnetic resonance in medicine.

[15]  Michal Neeman,et al.  In Vivo Prediction of Vascular Susceptibility to Vascular Endothelial Growth Factor Withdrawal Magnetic Resonance Imaging of C6 Rat Glioma in Nude Mice , 1999 .

[16]  L. Schad,et al.  Perfusionsmessung mit der T2*-Kontrastmitteldynamik in der Neuroonkologie , 2005, Der Radiologe.

[17]  C K Kuhl,et al.  Dynamic image interpretation of MRI of the breast , 2000, Journal of magnetic resonance imaging : JMRI.

[18]  L R Schad,et al.  Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. , 1991, Journal of computer assisted tomography.

[19]  H. Kauczor,et al.  Dynamic contrast‐enhanced MRI for assessing the disease activity of multiple myeloma: A comparative study with histology and clinical markers , 2005, Journal of magnetic resonance imaging : JMRI.

[20]  P. Vaupel,et al.  Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. , 2004, The oncologist.

[21]  M. Bock,et al.  High‐resolution three‐dimensional MR angiography of rodent tumors: Morphologic characterization of intratumoral vasculature , 2003, Journal of magnetic resonance imaging : JMRI.

[22]  J. Folkman,et al.  Anti‐Angiogenesis: New Concept for Therapy of Solid Tumors , 1972, Annals of surgery.

[23]  J. Capeau,et al.  Liposomes enhance delivery and expression of an RGD-oligolysine gene transfer vector in human tracheal cells , 1998, Gene Therapy.

[24]  U. Vanhoefer,et al.  Vascular endothelial growth factor receptor tyrosine kinase inhibitors: PTK787/ZK 222584 , 2003 .

[25]  G Brix,et al.  Pathophysiologic basis of contrast enhancement in breast tumors , 1999, Journal of magnetic resonance imaging : JMRI.

[26]  G Brix,et al.  Multicompartment analysis of gadolinium chelate kinetics: Blood‐tissue exchange in mammary tumors as monitored by dynamic MR imaging , 1999, Journal of magnetic resonance imaging : JMRI.

[27]  J. Folkman Clinical Applications of Research on Angiogenesis , 1995 .

[28]  James H Thrall,et al.  Imaging angiogenesis: applications and potential for drug development. , 2005, Journal of the National Cancer Institute.

[29]  A. Padhani,et al.  Antivascular cancer treatments: functional assessments by dynamic contrast-enhanced magnetic resonance imaging , 2005, Abdominal Imaging.

[30]  H. Huisman,et al.  Accurate estimation of pharmacokinetic contrast‐enhanced dynamic MRI parameters of the prostate , 2001, Journal of magnetic resonance imaging : JMRI.

[31]  H. Schlemmer,et al.  Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens? , 2004, European Radiology.

[32]  N. van Bruggen,et al.  Magnetic resonance imaging detects suppression of tumor vascular permeability after administration of antibody to vascular endothelial growth factor. , 1998, Cancer investigation.

[33]  S. Ogawa,et al.  Oxygenation‐sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields , 1990, Magnetic resonance in medicine.

[34]  Soonmee Cha,et al.  Perfusion MR Imaging of Brain Tumors , 2004, Topics in magnetic resonance imaging : TMRI.

[35]  C K Kuhl,et al.  Breast neoplasms: T2* susceptibility-contrast, first-pass perfusion MR imaging. , 1997, Radiology.

[36]  A. Padhani MRI for assessing antivascular cancer treatments. , 2003, The British journal of radiology.

[37]  R. Strecker,et al.  Vessel size imaging in humans , 2005, Magnetic resonance in medicine.

[38]  T. Sawyer Cancer metastasis therapeutic targets and drug discovery: emerging small-molecule protein kinase inhibitors , 2004, Expert opinion on investigational drugs.

[39]  P.-F. Liu,et al.  MRI of the uterus, uterine cervix, and vagina: diagnostic performance of dynamic contrast-enhanced fast multiplanar gradient-echo imaging in comparison with fast spin-echo T2-weighted pulse imaging , 1998, European Radiology.

[40]  Shelton D Caruthers,et al.  Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. , 2003, Circulation.

[41]  D M Shames,et al.  Quantification of the extraction fraction for gadopentetate across breast cancer capillaries , 1998, Magnetic resonance in medicine.

[42]  Peter Vaupel,et al.  The role of hypoxia-induced factors in tumor progression. , 2004, The oncologist.

[43]  P. Pasqualetti,et al.  Enhancement patterns of prostate cancer in dynamic MRI , 2003, European Radiology.

[44]  O. Haraldseth,et al.  Differentiating Benign and Malignant Breast Lesions with T2*-Weighted First Pass Perfusion Imaging , 1999, Acta radiologica.

[45]  R. Brasch,et al.  MRI characterization of tumors and grading angiogenesis using macromolecular contrast media: status report. , 2000, European journal of radiology.

[46]  J. Folkman Endogenous angiogenesis inhibitors , 2004, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[47]  M. Neeman,et al.  Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain: magnetic resonance imaging, confocal microscopy, and histological tracking of triple-labeled albumin. , 2002, Cancer research.

[48]  L. Steinman,et al.  ICAM-1 expression in autoimmune encephalitis visualized using magnetic resonance imaging , 2000, Journal of Neuroimmunology.

[49]  Stasia A. Anderson,et al.  Magnetic resonance contrast enhancement of neovasculature with αvβ3‐targeted nanoparticles , 2000 .

[50]  Siqing Shan,et al.  Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Klaas Nicolay,et al.  Lipid‐based nanoparticles for contrast‐enhanced MRI and molecular imaging , 2006, NMR in biomedicine.

[52]  S A Wickline,et al.  Magnetic resonance contrast enhancement of neovasculature with alpha(v)beta(3)-targeted nanoparticles. , 2000, Magnetic resonance in medicine.

[53]  M. Neeman,et al.  Functional and molecular mapping of uncoupling between vascular permeability and loss of vascular maturation in ovarian carcinoma xenografts: The role of stroma cells in tumor angiogenesis , 2005, International journal of cancer.

[54]  G N Stewart,et al.  Researches on the Circulation Time in Organs and on the Influences which affect it , 1893, The Journal of physiology.

[55]  W. Kaiser,et al.  MR imaging of the breast: fast imaging sequences with and without Gd-DTPA. Preliminary observations. , 1989, Radiology.

[56]  Martin W. Brechbiel,et al.  Dendrimer-based macromolecular MRI contrast agents: characteristics and application. , 2003 .

[57]  L R Schad,et al.  High-resolution MR venography of cerebral arteriovenous malformations. , 1999, Magnetic resonance imaging.

[58]  T. Ichikawa,et al.  Perfusion MR imaging with a superparamagnetic iron oxide using T2-weighted and susceptibility-sensitive echoplanar sequences: evaluation of tumor vascularity in hepatocellular carcinoma. , 1999, AJR. American journal of roentgenology.

[59]  M. Knopp,et al.  Estimating kinetic parameters from dynamic contrast‐enhanced t1‐weighted MRI of a diffusable tracer: Standardized quantities and symbols , 1999, Journal of magnetic resonance imaging : JMRI.

[60]  K. Zierler,et al.  On the theory of the indicator-dilution method for measurement of blood flow and volume. , 1954, Journal of applied physiology.

[61]  J. Glökler,et al.  Application of aptamers in therapeutics and for small-molecule detection. , 2006, Handbook of experimental pharmacology.

[62]  Christopher M. Overall,et al.  Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy , 2006, Nature Reviews Cancer.

[63]  J. Folkman Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. , 1995, The New England journal of medicine.

[64]  T. Helbich,et al.  Can a small-molecular gadolinium contrast agent be applied successfully with dynamic MRI to quantitatively define brain tumor microvascular responses to angiogenesis inhibition? , 2002, Academic radiology.

[65]  Vasilis Ntziachristos,et al.  Steady-state blood volume measurements in experimental tumors with different angiogenic burdens a study in mice. , 2003, Radiology.

[66]  L. Thoma,et al.  A tumor vasculature targeted liposome delivery system for combretastatin A4: Design, characterization, and in vitro evaluation , 2006, AAPS PharmSciTech.

[67]  G. van Kaick,et al.  Bone marrow microcirculation analysis in multiple myeloma by contrast‐enhanced dynamic magnetic resonance imaging , 2001, International journal of cancer.

[68]  J. Folkman Tumor angiogenesis: therapeutic implications. , 1971, The New England journal of medicine.

[69]  R L Ehman,et al.  Intracranial aneurysms and vascular malformations: comparison of time-of-flight and phase-contrast MR angiography. , 1991, Radiology.

[70]  A. Dennison,et al.  Angiogenesis of gastrointestinal tumours and their metastases--a target for intervention? , 2004, European journal of cancer.

[71]  M. Bednarski,et al.  Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. , 1998, Nature medicine.

[72]  Christopher M Overall,et al.  Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. , 2006, Nature reviews. Cancer.

[73]  Klaas Nicolay,et al.  MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[74]  P. Turski,et al.  Staging of arteriovenous malformations using three-dimensional time-of-flight MR angiography and volume-rendered displays of surface anatomy. , 1996, AJR. American journal of roentgenology.

[75]  Michal Neeman,et al.  Monitoring photodynamic therapy of solid tumors online by BOLD-contrast MRI , 2003, Nature Medicine.

[76]  Wolfhard Semmler,et al.  Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis , 2004, Nature Medicine.

[77]  R. Brasch,et al.  MRI monitoring of Avastin™ antiangiogenesis therapy using B22956/1, a new blood pool contrast agent, in an experimental model of human cancer , 2004, Journal of magnetic resonance imaging : JMRI.

[78]  Robert C Brasch,et al.  Imaging of tumor angiogenesis: current approaches and future prospects. , 2006, Current pharmaceutical design.

[79]  Rakesh K Jain,et al.  Molecular regulation of vessel maturation , 2003, Nature Medicine.

[80]  M. Bock,et al.  Synthesis and characterization of HE-24.8: a polymeric contrast agent for magnetic resonance angiography. , 2006, Bioconjugate chemistry.

[81]  Viktor Novikov,et al.  Tumor microvascular changes in antiangiogenic treatment: Assessment by magnetic resonance contrast media of different molecular weights , 2004, Journal of magnetic resonance imaging : JMRI.

[82]  P. Carmeliet,et al.  Angiogenesis in cancer and other diseases , 2000, Nature.

[83]  Ralph Weissleder,et al.  Targeted imaging of human endothelial-specific marker in a model of adoptive cell transfer , 2006, Laboratory Investigation.

[84]  Robert S. Kerbel,et al.  The anti-angiogenic basis of metronomic chemotherapy , 2004, Nature Reviews Cancer.

[85]  Wolfhard Semmler,et al.  Dynamic contrast-enhanced magnetic resonance imaging rapidly indicates vessel regression in human squamous cell carcinomas grown in nude mice caused by VEGF receptor 2 blockade with DC101. , 2004, Neoplasia.

[86]  C. Kuhl,et al.  Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? , 1999, Radiology.

[87]  R. Lucht,et al.  Microcirculation and microvasculature in breast tumors: Pharmacokinetic analysis of dynamic MR image series , 2004, Magnetic resonance in medicine.

[88]  R. Brasch,et al.  Tumor microvascular changes to anti-angiogenic treatment assessed by MR contrast media of different molecular weights. , 2002, Academic radiology.

[89]  Wolfhard Semmler,et al.  Simple models improve the discrimination of prostate cancers from the peripheral gland by T1-weighted dynamic MRI , 2004, European Radiology.

[90]  L. Tei,et al.  Magnetic resonance visualization of tumor angiogenesis by targeting neural cell adhesion molecules with the highly sensitive gadolinium-loaded apoferritin probe. , 2006, Cancer research.

[91]  L R Schad,et al.  [Perfusion measurement using the T2* contrast media dynamics in neuro-oncology. Physical basics and clinical applications]. , 2005, Der Radiologe.

[92]  Tom Mikkelsen,et al.  Assessment of brain tumor angiogenesis inhibitors using perfusion magnetic resonance imaging: Quality and analysis results of a phase I trial , 2004, Journal of magnetic resonance imaging : JMRI.

[93]  Samuel A. Wickline,et al.  Molecular Imaging of Angiogenesis in Early-Stage Atherosclerosis With &agr;v&bgr;3-Integrin–Targeted Nanoparticles , 2003 .

[94]  M. Décorps,et al.  Vessel size imaging , 2001, Magnetic resonance in medicine.

[95]  Y Usson,et al.  In vivo assessment of tumoral angiogenesis , 2004, Magnetic resonance in medicine.

[96]  G Brix,et al.  Uterine cervical carcinoma: comparison of standard and pharmacokinetic analysis of time-intensity curves for assessment of tumor angiogenesis and patient survival. , 1998, Cancer research.

[97]  D B Kopans,et al.  Dynamic echo-planar imaging of the breast: experience in diagnosing breast carcinoma and correlation with tumor angiogenesis. , 1997, Radiology.