Decay of solutions for a mixture of thermoelastic one dimensional solids

We study a PDE system modeling thermomechanical deformations for a mixture of thermoelastic solids. In particular we investigate the asymptotic behavior of the solutions. First, we identify conditions on the constitutive coefficients to guarantee that the imaginary axis is contained in the resolvent. Subsequently, we find the necessary and sufficient conditions to guarantee the exponential decay of solutions. When the decay is not of exponential type, we prove that the solutions decay polynomially and we find the optimal polynomial decay rate.

[1]  Yuri Tomilov,et al.  Optimal polynomial decay of functions and operator semigroups , 2009, 0910.0859.

[2]  P. D. Kelly A reacting continuum , 1964 .

[3]  D. S. Drumheller,et al.  Theories of immiscible and structured mixtures , 1983 .

[4]  A. Bedford,et al.  Toward A Diffusing Continuum Theory of Composite Materials , 1971 .

[5]  Zhuangyi Liu,et al.  Energy decay rate of the thermoelastic Bresse system , 2009 .

[6]  Zhuangyi Liu,et al.  Semigroups Associated with Dissipative Systems , 1999 .

[7]  Ramón Quintanilla,et al.  Exponential decay in mixtures with localized dissipative term , 2005, Appl. Math. Lett..

[8]  R. E. Craine,et al.  CONTINUUM THEORIES OF MIXTURES: BASIC THEORY AND HISTORICAL DEVELOPMENT , 1976 .

[9]  J. Prüss On the Spectrum of C 0 -Semigroups , 1984 .

[10]  F. Huang Strong Asymptotic Stability of Linear Dynamical Systems in Banach Spaces , 1993 .

[11]  A. Green,et al.  A note on mixtures , 1968 .

[12]  R. Quintanilla,et al.  Existence and continuous dependence results in the theory of interacting continua , 1994 .

[13]  R. Quintanilla,et al.  Exponential decay in a thermoelastic mixture of solids , 2009 .

[14]  M. Sepúlveda,et al.  Exponential stability in thermoviscoelastic mixtures of solids , 2009 .

[15]  M. Sepúlveda,et al.  Analyticity and Smoothing Effect for the Coupled System of Equations of Korteweg-de Vries Type with a Single Point Singularity , 2007, 0704.1861.

[16]  T. Steel APPLICATIONS OF A THEORY OF INTERACTING CONTINUA , 1967 .

[17]  C. Truesdell,et al.  The Classical Field Theories , 1960 .

[18]  M. Sepúlveda,et al.  Analyticity of Semigroups Associated with Thermoviscoelastic Mixtures of Solids , 2009 .

[19]  R. Quintanilla,et al.  SOME QUALITATIVE RESULTS FOR THE LINEAR THEORY OF BINARY MIXTURES OF THERMOELASTIC SOLIDS , 1995 .

[20]  John D. Ingram,et al.  A continuum theory of chemically reacting media—II Constitutive equations of reacting fluid mixtures☆ , 1967 .

[21]  I. Müller A thermodynamic theory of mixtures of fluids , 1968 .

[22]  P. M. Naghdi,et al.  A Dynamical theory of interacting continua , 1965 .

[23]  I. Müller,et al.  A thermodynamic theory of two chemically reacting ideal gases with different temperatures , 1968 .

[24]  R. M. Bowen,et al.  Diffusion in Mixtures of Elastic Materials. , 1969 .

[25]  Roland Schnaubelt,et al.  Polynomial stability of operator semigroups , 2006 .

[26]  R. M. Bowen Part I – Theory of Mixtures , 1976 .

[27]  R. Quintanilla Existence and exponential decay in the linear theory of viscoelastic mixtures , 2005 .

[28]  Jan Prüss,et al.  On the spectrum of ₀-semigroups , 1984 .

[29]  H. Tiersten,et al.  A theory of composites modeled as interpenetrating solid continua , 1977 .

[30]  A. Bedford,et al.  A multi-continuum theory for composite elastic materials , 1972 .

[31]  John D. Ingram,et al.  A Continuum theory of chemically reacting media—I , 1965 .