Simulation of lithium iron phosphate lithiation/delithiation: Limitations of the core–shell model

[1]  Renato J. Orsato,et al.  The emergence of an electric mobility trajectory , 2013 .

[2]  Gregory L. Plett,et al.  A convective transport theory for high rate discharge in lithium ion cells , 2013 .

[3]  Andrew Harrison,et al.  A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles , 2012 .

[4]  M. Safari,et al.  Life Simulation of a Graphite/LiFePO4 Cell under Cycling and Storage , 2012 .

[5]  A. Jansen,et al.  A Volume Averaged Approach to the Numerical Modeling of Phase-Transition Intercalation Electrodes Presented for LixC6 , 2012 .

[6]  M. Safari,et al.  Mathematical Modeling of Lithium Iron Phosphate Electrode: Galvanostatic Charge/Discharge and Path Dependence , 2011 .

[7]  Stefan Pischinger,et al.  Quantifying the effects of strains on the conductivity and porosity of LiFePO4 based Li-ion composite cathodes using a multi-scale approach , 2011 .

[8]  M. Safari,et al.  Simulation-Based Analysis of Aging Phenomena in a Commercial Graphite/LiFePO4 Cell , 2011 .

[9]  Charles Delacourt,et al.  Mathematical Modeling of Commercial LiFePO4 Electrodes Based on Variable Solid-State Diffusivity , 2011 .

[10]  Robert J. Kee,et al.  Thermodynamically consistent modeling of elementary electrochemistry in lithium-ion batteries , 2010 .

[11]  Mohammadhosein Safari,et al.  Analysis of lithium deinsertion/insertion in LiyFePO4 with a simple mathematical model , 2010 .

[12]  Steven Dargaville,et al.  Predicting Active Material Utilization in LiFePO4 Electrodes Using a Multiscale Mathematical Model , 2010 .

[13]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[14]  Wolfgang Dreyer,et al.  The thermodynamic origin of hysteresis in insertion batteries. , 2010, Nature materials.

[15]  Marnix Wagemaker,et al.  The Role of Surface and Interface Energy on Phase Stability of Nanosized Insertion Compounds , 2009, Advanced materials.

[16]  Linda F Nazar,et al.  Proof of intercrystallite ionic transport in LiMPO(4) electrodes (M = Fe, Mn). , 2009, Journal of the American Chemical Society.

[17]  Ralph E. White,et al.  Thermodynamic model development for lithium intercalation electrodes , 2008 .

[18]  Pedro E. Arce,et al.  Discharge Model for LiFePO4 Accounting for the Solid Solution Range , 2008 .

[19]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[20]  Karen E. Thomas-Alyea Modeling Resistive-Reactant and Phase-Change Materials in Battery Electrodes , 2008 .

[21]  Martin Z. Bazant,et al.  Phase-Transformation Wave Dynamics in LiFePO4 , 2008 .

[22]  M. Armand,et al.  Building better batteries , 2008, Nature.

[23]  Pedro E. Arce,et al.  A Discharge Model for Phase Transformation Electrodes: Formulation, Experimental Validation, and Analysis , 2007 .

[24]  Moving Boundary Model for the Discharge of a LiCoO2 Electrode , 2007 .

[25]  W. Craig Carter,et al.  Size-Dependent Lithium Miscibility Gap in Nanoscale Li1 − x FePO4 , 2007 .

[26]  Charles Delacourt,et al.  Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy , 2006 .

[27]  Venkat Srinivasan,et al.  Existence of path-dependence in the LiFePO4 electrode , 2006 .

[28]  Igor O. Golosnoy,et al.  Numerical solutions of diffusion-controlled moving boundary problems which conserve solute , 2005 .

[29]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .

[30]  D. Wheeler,et al.  Modeling of lithium-ion batteries , 2003 .

[31]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[32]  J. Davidson IMPACT BUCKLING OF DEEP BEAMS IN PURE BENDING , 1955 .

[33]  H. G. Landau,et al.  Heat conduction in a melting solid , 1950 .