Biology of neglected groups : Echinodermata / Biologie des groupes négligés : Echinodermata

We review the literature on larval development of 182 asteroids, 20 crinoids, 177 echinoids, 69 holothuroids, and 67 ophiuroids. For each class, we describe the various larval types, common features of a larval body plan, devel opmental patterns in terms of life-cycle character states and sequences of larval stages, phylogenetic distribution of these traits, and infer evolutionary transitions that account for the documented diversity. Asteroids, echinoids, holothuroids, and ophiuroids, but not crinoids, have feeding larvae. All five classes have evolved nonfeeding larvae. Direct development has been documented in asteroids, echinoids, and ophiuroids. Facultative planktotrophy has been documented only in echinoids. It is surprising that benthic, free-living, feeding larvae have not been reported in echinoderms. From this review, we conclude that it is the ecological and functional demands on larvae which impose limits on developmental evolution and determine the associations of larval types and life-cycle character states that give rise to the developmental patterns that we observe in echinoderms. Two factors seriously limit analyses of larval and life-cycle evolution in echinoderms. First is the limited understanding of developmental diversity and second is the lack of good phylogenies. Résumé: On trouvera ici une revue de la littérature sur le développement larvaire de 182 astéroïdes, 20 crinoïdes, 177 échinoïdes, 69 holothuroïdes et 67 ophiuroïdes. Pour chacune des classes, nous décrivons les divers types de larves, les caractères communs du plan général du corps de la larve, les patterns de développement, en particulier les différents états des caractéristiques du cycle biologique et les séquences de stades larvaires, enfin, la répartition phylogénétique de ces états des caractères; nous en déduisons les transitions évolutives qui peuvent expliquer la diversité existante. Les astéroïdes, les échinoïdes, les holothuroïdes et les ophiuroïdes, mais pas les crinoïdes, ont des larves qui se nourrissent. Les cinq classes possèdent aussi des larves qui ne se nourrissent pas. Le développement direct a été observé et décrit chez les astéroïdes, les échinoïdes et les ophiuroïdes. Les planctonophagie facultative n’est connue que chez les échinoïdes. Il est étonnant qu’aucune des classes d’échinodermes ne semble avoir de larves benthiques et libres qui se nourrissent. Cette révision indique que, dans les patterns de développement que nous observons chez les échinodermes, ce sont les besoins écologiques et fonctionnels des larves qui imposent des limites à l’évolution du développement et qui déterminent l’association entre le type de larve et les caractères du cycle biologique. Deux facteurs empêchent l’analyse adéquate de l’évolution des larves et des cycles biologiques chez les échinodermes : le premier est notre compréhension limitée de la diversité de leur développement, le second, le manque de bonnes études phylogénétiques. [Traduit par la Rédaction] 1170 Reviews / Synthèses Introduction In this paper, we review the literature on the larval diversity and developmental patterns of the five classes of echino derms (Appendix Table A1). For each class, we describe the various larval types, common features of a larval body plan, developmental patterns in terms of life-cycle character states and sequences of larval stages, and the phylogenetic distri bution of these traits, then we analyze the evolution of larvae and developmental patterns. A discussion of the hypotheses about adaptive and historical factors that drive the evolution of life cycles and explain patterns of development is beyond the scope of this review. Interested readers should consult recent echinocentric reviews (e.g., Strathmann 1985, 1993; Emlet 1994; Wray 1995 a; Hart et al. 1997; McEdward 1997; McEdward and Janies 1997; Byrne et al. 1999 a; Byrne et al. 1999b; Levitan 2000). A developmental pattern is a unique combination of lifecycle character states (McEdward and Janies 1993). Patterns here are evaluated with respect to three characters (Table 1): type of morphogenesis (complex larval, simple larval, direct), nutritional mode (planktotrophic or lecithotrophic), and developmental habitat (pelagic or benthic) (for a discussion of these and other life-cycle characters see McEdward and Janies 1997). Out of the 12 possible developmental patterns, we expect only 8 combinations of character states to be via Can. J. Zool.79: 1125–1170 (2001) © 2001 NRC Canada 1125 DOI: 10.1139/cjz-79-7-1125 Received April 26, 2000. Accepted August 23, 2000. Published on the NRC Research Press Web site at http://cjz.nrc.ca on July 6, 2001. L.R. McEdward 2 and B.G. Miner.3 Department of Zoology, University of Florida, 223 Bartram Hall, P.O. Box 118525, Gainesville, FL 32611, U.S.A. 1This review is one of a series dealing with aspects of the biology of the phylum Echinodermata. This series is one of several virtual symposia on the biology of neglected groups that will be published in the Journal from time to time. 2Deceased. 3Corresponding author (e-mail: miner@zoo.ufl.edu). Biology of neglected groups: Echinodermata / Biologie des groupes négligés : Echinodermata J:\cjz\cjz79\cjz-07\Z00-218.vp Monday, July 09, 2001 9:34:38 AM Color profile: Generic CMYK printer profile Composite Default screen

[1]  M. Jangoux,et al.  Post-spawning behavior and early development of the comatulid crinoid, Antedon bifida , 2020, Echinodermata.

[2]  K. Morgan,et al.  Interspecific Relationships Between Egg Size and the Level of Parental Investment per Offspring in Echinoderms , 2001, The Biological Bulletin.

[3]  C. Young,et al.  Larval development of the tropical deep-sea echinoid Aspidodiadema jacobyi: phylogenetic implications. , 2000, The Biological bulletin.

[4]  M. Byrne,et al.  Lipid dynamics in the embryos of Patiriella species (Asteroidea) with divergent modes of development , 2000, Development, growth & differentiation.

[5]  Kerr,et al.  Bi-penta-bi-decaradial symmetry: A review of evolutionary and developmental trends in holothuroidea (echinodermata) , 1999, The Journal of experimental zoology.

[6]  L. Mcedward,et al.  Body form and skeletal morphometrics during larval development of the sea urchin Lytechinus variegatus Lamarck , 1999 .

[7]  E J Balser,et al.  Cloning by Ophiuroid Echinoderm Larvae. , 1998, The Biological Bulletin.

[8]  L. Mcedward Reproductive Strategies of Marine Benthic Invertebrates Revisited: Facultative Feeding by Planktotrophic Larvae , 1997, The American Naturalist.

[9]  D. Janies,et al.  Relationships among development, ecology, and morphology in the evolution of Echinoderm larvae and life cycles , 1997 .

[10]  G. Wray Parallel Evolution of Nonfeeding Larvae in Echinoids , 1996 .

[11]  H. Wada,et al.  Mitochondrial rDNA phylogeny of the asteroidea suggests the primitiveness of the paxillosida. , 1996, Molecular phylogenetics and evolution.

[12]  M. Byrne,et al.  Evolution of Intragonadal Development in the Diminutive Asterinid Sea Stars Patiriella vivipara and P. parvivipara with an Overview of Development in the Asterinidae. , 1996, The Biological bulletin.

[13]  M. Byrne Viviparity and intragonadal cannibalism in the diminutive sea stars Patiriella vivipara and P. parvivipara (family Asterinidae) , 1996, Marine Biology.

[14]  J. Hamel,et al.  Early development, settlement, growth, and spatial distribution of the sea cucumber Cucumaria frondosa (Echinodermata: Holothuroidea) , 1996 .

[15]  M. Hart EVOLUTIONARY LOSS OF LARVAL FEEDING: DEVELOPMENT, FORM AND FUNCTION IN A FACULTATIVELY FEEDING LARVA, BRISASTER LATIFRONS , 1996, Evolution; international journal of organic evolution.

[16]  G. Wray Evolution of Larvae and Developmental Modes , 2020 .

[17]  R. Christen,et al.  A Combined Morphological and Molecular Approach to the Phylogeny of Asteroids (Asteroidea: Echinodermata) , 1995 .

[18]  L. Mcedward Evolution of pelagic direct development in the starfish Pteraster tesselatus (Asteroidea: Velatida) , 1995 .

[19]  G. Wray,et al.  Punctuated Evolution of Embryos , 1995, Science.

[20]  R. Emlet Larval spicules, cilia, and symmetry as remnants of indirect development in the direct developing sea urchin Heliocidaris erythrogramma. , 1995, Developmental biology.

[21]  D. Littlewood,et al.  A combined morphological and molecular phylogeny for sea urchins (Echinoidea: Echinodermata). , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[22]  M. Sewell,et al.  Reproduction of the intraovarian brooding apodid Leptosynapta clarki (Echinodermata: Holothuroidea) in British Columbia , 1994 .

[23]  R. Emlet Body Form and Patterns of Ciliation in Nonfeeding Larvae of Echinoderms: Functional Solutions to Swimming in the Plankton? , 1994 .

[24]  R. R. Strathmann,et al.  What Molecular Phylogenies Tell Us about the Evolution of Larval Forms , 1994 .

[25]  W. Jaeckle Multiple Modes of Asexual Reproduction by Tropical and Subtropical Sea Star Larvae: an Unusual Adaptation for Genet Dispersal and Survival. , 1994, The Biological bulletin.

[26]  D. Janies,et al.  Highly Derived Coelomic and Water-Vascular Morphogenesis in a Starfish with Pelagic Direct Development. , 1993, The Biological bulletin.

[27]  D. Janies,et al.  Life Cycle Evolution in Asteroids: What is a Larva? , 1993, The Biological bulletin.

[28]  T. Lacalli Ciliary Bands in Echinoderm Larvae: Evidence for Structural Homologies and a Common Plan , 1993 .

[29]  F. Chia,et al.  Sea-star (asteroid) development , 1993 .

[30]  I. Bosch Symbiosis between bacteria and oceanic clonal sea star larvae in the western North Atlantic Ocean , 1992 .

[31]  R. Raff,et al.  POPULATION GENETIC CONSEQUENCES OF DEVELOPMENTAL EVOLUTION IN SEA URCHINS (GENUS HELIOCIDARIS) , 1992, Evolution; international journal of organic evolution.

[32]  G. Wray The evolution of larval morphology during the post-Paleozoic radiation of echinoids , 1992, Paleobiology.

[33]  C. P. Chen,et al.  Reproductive cycle, larval development, juvenile growth and population dynamics of Patiriella pseudoexigua (Echinodermata: Asteroidea) in Taiwan , 1992 .

[34]  L. Mcedward Morphology and Development of a Unique Type of Pelagic Larva in the Starfish Pteraster tesselatus (Echinodermata: Asteroidea). , 1992, The Biological bulletin.

[35]  B. David,et al.  Antarctic and Subantarctic echinoids from 'Marion Dufresne' expeditions MD03, MD04, MD08 and from the 'Polarstern' expedition Epos III , 1992, Bulletin du Muséum national d'histoire naturelle.

[36]  R. Raff,et al.  RAPID EVOLUTION OF GASTRULATION MECHANISMS IN A SEA URCHIN WITH LECITHOTROPHIC LARVAE , 1991, Evolution; international journal of organic evolution.

[37]  M. Byrne Reproduction, development and population biology of the Caribbean ophiuroidOphionereis olivacea, a protandric hermaphrodite that broods its young , 1991 .

[38]  R. Emlet Functional Constraints on the Evolution of Larval Forms of Marine Invertebrates: Experimental and Comparative Evidence , 1991 .

[39]  F. Chia,et al.  Development and metamorphosis of two psolid sea cucumbers,Psolus chitonoides andPsolidium bullatum, with a review of reproductive patterns in the family Psolidae (Holothuroidea: Echinodermata) , 1991 .

[40]  M. Byrne,et al.  Embryogenesis and Larval Development of the Asteroid Patiriella regularis Viewed by Light and Scanning Electron Microscopy. , 1991, The Biological bulletin.

[41]  F. Chia,et al.  Sensory neurons of the bipinnaria larva of the sea star, Luidia senegalensis , 1991 .

[42]  T. Lacalli,et al.  Ciliary Band Innervation in the Bipinnaria Larva of Piaster ochraceus , 1990 .

[43]  M. Komatsu,et al.  Development of a True Ovoviviparous Sea Star, Asterina pseudoexigua pacifica Hayashi. , 1990, The Biological bulletin.

[44]  R. Raff,et al.  Single-copy DNA distance between two congeneric sea urchin species exhibiting radically different modes of development. , 1990, Molecular biology and evolution.

[45]  R. Raff,et al.  The "lecithotrophic" sea urchin Heliocidaris erythrogramma lacks typical yolk platelets and yolk glycoproteins. , 1990, Developmental biology.

[46]  M. Lesser,et al.  Nutrition and development of brooded embryos in the brittlestar Amphipholis squamata: do endosymbiotic bacteria play a role? , 1989 .

[47]  R. Raff,et al.  Direct Development in the Sea Urchin Phyllacanthus parvispinus (Cidaroidea): Phylogenetic History and Functional Modification , 1989 .

[48]  I. Bosch Contrasting Modes of Reproduction in Two Antarctic Asteroids of the Genus Porania, With a Description of Unusual Feeding and Non-feeding Larval Types , 1989 .

[49]  R. Raff,et al.  Evolutionary Conservation of the Larval Serotonergic Nervous System in a Direct Developing Sea Urchin , 1989, Development, growth & differentiation.

[50]  R. Raff,et al.  Evolutionary modification of cell lineage in the direct-developing sea urchin Heliocidaris erythrogramma. , 1989, Developmental biology.

[51]  Stephen P. Alexander,et al.  Asexual reproduction by oceanic planktotrophic echinoderm larvae , 1989, Nature.

[52]  J. Costelloe Reproductive cycle, development and recruitment of two geographically separated populations of the dendrochirote holothurian Aslia lefevrei , 1988 .

[53]  D. Blake A classification and phylogeny of post-Palaeozoic sea stars (Asteroidea: Echinodermata) , 1987 .

[54]  R. Raff Constraint, flexibility, and phylogenetic history in the evolution of direct development in sea urchins. , 1987, Developmental biology.

[55]  M. F. Strathmann,et al.  Reproduction and development of marine invertebrates of the northern Pacific coast: data and methods for the study of eggs, embryos, and larvae , 1987 .

[56]  B. Bisgrove,et al.  STRUCTURE OF THE NERVOUS SYSTEM OF THE AURICULARIA LARVA OF PARASTICOPUS CALIFORNICUS , 1986 .

[57]  F. McEuen The reproductive biology and development of twelve species of Holothuroids from the San Juan Islands, Washington , 1986 .

[58]  R. R. Strathmann Feeding and Nonfeeding Larval Development and Life-History Evolution in Marine Invertebrates , 1985 .

[59]  F. Chia,et al.  Larval development of a molpadiid holothuroid, Molpadia intermedia (Ludwig, 1894) (Echinodermata) , 1985 .

[60]  M. Yamashita EMBRYONIC DEVELOPMENT OF THE BRITTLE-STAR AMPHIPHOLIS KOCHII IN LABORATORY CULTURE , 1985 .

[61]  S. Nojima,et al.  Development of the Seastar, Astropecten gisselbrechti Doderlein , 1985 .

[62]  P. Mladenov DEVELOPMENT AND METAMORPHOSIS OF THE BRITTLE STAR OPHIOCOMA PUMILA: EVOLUTIONARY AND ECOLOGICAL IMPLICATIONS , 1985 .

[63]  W. Erber The larval coelom as a significant feature of bipinnaria and brachiolaria in asteroid ontogeny. A critical approach , 1985 .

[64]  Gordon Hendler,et al.  Brittlestar Color-Change and Phototaxis (Echinodermata: Ophiuroidea: Ophiocomidae). , 1984 .

[65]  C. Messing Brooding and paedomorphosis in the deep-water feather star Comatilia iridometriformis (Echinodermata: Crinoidea) , 1984 .

[66]  R. Burke The structure of the larval nervous system of Pisaster ochraceus (Echinodermata: Asteroidea) , 1983, Journal of morphology.

[67]  P. Mladenov,et al.  Development, settling behaviour, metamorphosis and pentacrinoid feeding and growth of the feather star Florometra serratissima , 1983 .

[68]  G. Martel,et al.  Brooding behaviour of the northern sea star Leptasterias polaris , 1982 .

[69]  P. Mladenov Unusual lecithotrophic development of the caribbean brittle star Ophiothrix oerstedi , 1979 .

[70]  M. Komatsu,et al.  REPRODUCTION AND DEVELOPMENT OF THE HERMAPHRODITIC SEA-STAR, ASTERINA MINOR HAYASHI , 1979 .

[71]  T. Tsuchiya,et al.  Development of the echinothurid sea urchin Asthenosoma ijimai , 1979 .

[72]  R. Turner,et al.  Organic and inorganic composition of post-metamorphic growth stages of Ophionotushexactis (E.A. Smith) (Echinodermata: Ophiuroidea) during intraovarian incubation , 1979 .

[73]  M. W. Hardisty Reproduction and development , 1979 .

[74]  R. R. Strathmann THE EVOLUTION AND LOSS OF FEEDING LARVAL STAGES OF MARINE INVERTEBRATES , 1978, Evolution; international journal of organic evolution.

[75]  D. P. Wilson Some Observations on Bipinnariae and Juveniles of the Starfish Genus Luidia , 1978, Journal of the Marine Biological Association of the United Kingdom.

[76]  M. Barker Structure of the organs of attachment of brachiolaria larvae of Stichaster australis (Verrill) and Coscinasterias calamaria (Gray) (Echinodermata: Asteroidea) , 1978 .

[77]  M. Komatsu On the development of the sea-star, Astropecten latespinosus Meissner. , 1975, The Biological bulletin.

[78]  K. Okazaki Normal Development to Metamorphosis , 1975 .

[79]  M. Komatsu ON THE DEVELOPMENT OF THE SEA-STAR, , 1975 .

[80]  D. Anderson,et al.  The Reproductive System, Embryonic Development, Larval Development and Metamorphosis of the Sea Urchin Heliocidaris erythrogramma (Val.) (Echinoidea : Echinometridae) , 1975 .

[81]  S. Stancyk Development of Ophiolepis elegans (Echinodermata: Ophiuroidea) and its implications in the estuarine environment , 1973 .

[82]  D. Atwood LARVAL DEVELOPMENT IN THE ASTEROID ECHINASTER ECHINOPHORUS. , 1973, The Biological bulletin.

[83]  Gösta Jägersten,et al.  Evolution of the Metazoan life cycle;: A comprehensive theory , 1972 .

[84]  A. Dartnall Australian sea stars of the genus Patiriella lAsteroideac Asterinidaer , 1971 .

[85]  T. G. Dix Larval life span of the echinoid evechinus chloroticus (val.) , 1969 .

[86]  F. Chia The Embryology of a Brooding Starfish, Leptasterias hexactis (Stimpson) , 1968 .

[87]  A. G. W. Cameron,et al.  The early development of the earth. , 1963 .

[88]  L. Hyman,et al.  The invertebrates: Echinodermata, the coelomate bilateria , 1955 .

[89]  K. Okazaki,et al.  THE METAMORPHOSIS OF PARTIAL LARVAE OF PERONELLA JAPONICA MORTENSEN, A SAND DOLLAR , 1954 .

[90]  H. B. Fell ECHINODERM EMBRYOLOGY AND THE ORIGIN OF CHORDATES , 1948, Biological reviews of the Cambridge Philosophical Society.

[91]  A. Lawson,et al.  New Species , 1897, Botanical Gazette.

[92]  H. B. Fell,et al.  Memoirs: The Direct Development of a New Zealand Ophiuroid , 1941 .

[93]  W. Garstang Memoirs: Spolia Bermudiana , 1939 .

[94]  R. Aiyar Early development and metamorphosis of the tropical echinoidSalmacis bicolor, agassiz , 1935, Proceedings / Indian Academy of Sciences.

[95]  H. Ohshima NOTES ON THE DEVELOPMENT OF THE SEA-CUCUMBER, THYONE BRIAREUS. , 1925, Science.

[96]  H. Clark The echinoderm fauna of South Africa , 1923 .

[97]  F. A. BATHER,et al.  Studies of the Development and Larval Forms of Echinoderms , 1921, Nature.

[98]  J. Gemmill The development and certain points in the adult structure of the starfish asterias rubens, L. , 1914 .

[99]  J. Gemmill The development of the starfish Solaster Endeca Forbes. , 1912 .

[100]  W. K. Fisher Asteroidea of the North Pacific and adjacent waters , 1911 .

[101]  A. T. Masterman XIX.—The Early Development of Cribrella oculata (Forbes), with Remarks on Echinoderm Development , 1905, Transactions of the Royal Society of Edinburgh.

[102]  Th. Mortensen Die Echinodermenlarven der Plankton-Expedition, nebst einer systemtischen Revision der bisher bekannten Echinodermenlarven , 1898 .

[103]  H. Bury Memoirs: The Metamorphosis of Echnioderms , 1895 .