Maturation of kainic acid seizure-brain damage syndrome in the rat. i. clinical, electrographic and metabolic observations

[1]  Y. Ben-Ari Limbic seizure and brain damage produced by kainic acid: Mechanisms and relevance to human temporal lobe epilepsy , 1985, Neuroscience.

[2]  Y. Ben‐Ari,et al.  Usefulness of parenteral kainic acid as a model of temporal lobe epilepsy. , 1984, Revue d'electroencephalographie et de neurophysiologie clinique.

[3]  Y. Ben‐Ari,et al.  Maturation of kainic acid seizure-brain damage syndrome in the rat. III. Postnatal development of kainic acid binding sites in the limbic system , 1984, Neuroscience.

[4]  Y. Ben‐Ari,et al.  Maturation of kainic acid seizure-brain damage syndrome in the rat. II. Histopathological sequelae , 1984, Neuroscience.

[5]  N. Geschwind,et al.  Temporal lobe epilepsy , 1984, Neurology.

[6]  Y. Ben‐Ari,et al.  Kainic acid seizure syndrome and binding sites in developing rats. , 1984, Brain research.

[7]  S. Kish,et al.  Kainic acid induced seizures: Neurochemical and histopathological changes , 1983, Neuroscience.

[8]  D. Hopkins,et al.  Direct amygdaloid projections to the dorsal motor nucleus of the vagus nerve: a light and electron microscopic study in the rat , 1983, Brain Research.

[9]  S. Feldblum,et al.  Role of the amygdala in development of hippocampal kindling in the rat , 1983, Experimental Neurology.

[10]  D. Kristt Acetylcholinesterase in the ventrobasal thalamus: Transience and patterning during ontogenesis , 1983, Neuroscience.

[11]  Y. Ben-Ari,et al.  Autoradiographic visualization of [3H]kainic acid receptor subtypes in the rat hippocampus , 1983, Neuroscience Letters.

[12]  T. Scott,et al.  The postnatal metabolic development of the nucleus commissuralis and nucleus medialis of the nucleus tractus solitarius. , 1983, Brain research.

[13]  E. Cherubini,et al.  Behavioral and electrographic patterns induced by systemic administration of kainic acid in developing rats. , 1983, Brain research.

[14]  D. Riche,et al.  Amygdaloid lesion increases the toxicity of intrahippocampal kainic acid injection and reduces the late occurrence of spontaneous recurrent seizures in rats , 1983, Brain Research.

[15]  O. P. Ottersen,et al.  Intra-amygdaloid injections of kainic acid: Regional metabolic changes and their relation to the pathological alterations , 1983, Neuroscience.

[16]  J. Mcculloch,et al.  A potential error in modifications of the [14C]2-deoxyglucose technique , 1983, Brain Research.

[17]  J. Wamsley,et al.  Autoradiographic localization of high-affinity [3H]kainic acid binding sites in the rat forebrain. , 1983, European journal of pharmacology.

[18]  C. Cotman,et al.  The distribution of [3H]kainic acid binding sites in rat CNS as determined by autoradiography , 1982, Brain Research.

[19]  E. Cherubini,et al.  A simple method for implanting electrodes in freely moving neonatal rats , 1982, Journal of Neuroscience Methods.

[20]  D. Riche,et al.  Long-term effects of intrahippocampal kainic acid injection in rats: a method for inducing spontaneous recurrent seizures. , 1982, Electroencephalography and clinical neurophysiology.

[21]  S. Deadwyler,et al.  Kainic acid produces depolarization of CA3 pyramidal cells in the in vitro hippocampal slice , 1981, Brain Research.

[22]  R. C. Collins,et al.  Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates , 1981, Brain Research.

[23]  Y. Ben-Ari,et al.  Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: Metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy , 1981, Neuroscience.

[24]  S. D. Glick,et al.  The ontogeny of hippocampal energy metabolism , 1981, Brain Research.

[25]  C. Pilgrim,et al.  Improving the Resolution of the 2-Deoxy-D-Glucose Method 1 , 2 , 1981, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[26]  J. Nadler,et al.  Kainic acid neurotoxicity toward hippocampal formation: Dependence on specific excitatory pathways , 1980, Brain Research.

[27]  S. D. Glick,et al.  Intraperitoneal administration and other modifications of the 2-deoxy-d-glucose technique , 1980, Brain Research.

[28]  O. Ottersen,et al.  The role of epileptic activity in hippocampal and ‘remote’ cerebral lesions induced by kainic acid , 1980, Brain Research.

[29]  J. Price,et al.  Widespread patterns of neuronal damage following systemic or intracerebral injections of kainic acid: A histological study , 1980, Neuroscience.

[30]  O. P. Ottersen,et al.  Injections of kainic acid into the amygdaloid complex of the rat: An electrographic, clinical and histological study in relation to the pathology of epilepsy , 1980, Neuroscience.

[31]  S. Bayer,et al.  Development of the hippocampal region in the rat II. Morphogenesis during embryonic and early postnatal life , 1980, The Journal of comparative neurology.

[32]  J. Talairach,et al.  Role du noyau amygdalien dans la survenue de manifestations oro-alimentaires au cours des crises épileptiques chez l'homme* , 1979 .

[33]  J. Olney,et al.  Effects of morphine or naloxone on kainic acid neurotoxicity. , 1979, Life sciences.

[34]  J. Holaday,et al.  Endorphins may function in heat adaptation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Zimmer,et al.  Laminar differentiation of the hippocampus, fascia dentata and subiculum in developing rats, observed with the timm sulphide silver method , 1978, The Journal of comparative neurology.

[36]  J. Holaday,et al.  Unique behavioral effects of beta endorphin and their relationship to thermoregulation and hypothalamic function. , 1978, Life sciences.

[37]  C. Cotman,et al.  Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells , 1978, Nature.

[38]  J. Aicardi,et al.  Convulsive Disorders in the First Year of Life: Neurological and Mental Outcome and Mortality , 1978, Epilepsia.

[39]  F. Sharp,et al.  Autoradiographic maps of regional brain glucose consumption in resting, awake rats using [14c] 2‐deoxyglucose , 1978, The Journal of comparative neurology.

[40]  W. Cowan,et al.  An autoradiographic study of the development of the entorhinal and commissural afferents to the dentate gyrus of the Rat , 1977, The Journal of comparative neurology.

[41]  M. Reivich,et al.  THE [14C]DEOXYGLUCOSE METHOD FOR THE MEASUREMENT OF LOCAL CEREBRAL GLUCOSE UTILIZATION: THEORY, PROCEDURE, AND NORMAL VALUES IN THE CONSCIOUS AND ANESTHETIZED ALBINO RAT 1 , 1977, Journal of neurochemistry.

[42]  G. Lynch,et al.  Development of afferent lamination in the fascia dentata of the rat , 1977, Brain Research.

[43]  G. Dahlquist,et al.  The Rate of Cerebral Utilization of Glucose, Ketone Bodies, and Oxygen: A Comparative in Vivo Study of Infant and Adult Rats , 1976, Pediatric Research.

[44]  H. Gastaut,et al.  Relative Frequency of Different Types of Epilepsy: A Study Employing the Classification of the International League Against Epilepsy , 1975, Epilepsia.

[45]  H. Kraus,et al.  Developmental Changes of Cerebral Ketone Body Utilization in Human Infants , 1974, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[46]  R. Racine,et al.  Modification of seizure activity by electrical stimulation. II. Motor seizure. , 1972, Electroencephalography and clinical neurophysiology.

[47]  J. Aicardi,et al.  Convulsive Status Epilepticus in Infants and Children , 1970, Epilepsia.

[48]  G. V. Goddard,et al.  A permanent change in brain function resulting from daily electrical stimulation. , 1969, Experimental neurology.

[49]  S. Jarman,et al.  Topographic brain chemistry: R.L. FRIEDE. Academic Press, New York, 1966. 543 pp. $22 , 1967 .

[50]  J H Margerison,et al.  Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. , 1966, Brain : a journal of neurology.

[51]  S. C. Wang,et al.  Intravenous, cortical and intraventricular dose-effect relationship of pentylenetetrazol, picrotoxin and deslanoside in dogs. , 1962, Electroencephalography and clinical neurophysiology.

[52]  W. Scholz The Contribution of Patho‐Anatomical Research to the Problem of Epilepsy , 1959 .

[53]  N. Malamud,et al.  Clinical significance of sclerosis of the cornu ammonis: ictal psychic phenomena. , 1953, A.M.A. archives of neurology and psychiatry.

[54]  G. Capovilla,et al.  Nosological classification of epilepsies in the first three years of life. , 1983, Progress in clinical and biological research.

[55]  G. le gal la Salle Amygdaloid organization related to the kindling effect. , 1982, Electroencephalography and clinical neurophysiology. Supplement.

[56]  G. Lynch,et al.  Development of cholinergic innervation in the hippocampal formation of the rat. I. Histochemical demonstration of acetylcholinesterase activity. , 1974, Developmental biology.

[57]  J Bancaud,et al.  Depth Recordings in Man in Temporal Lobe Epilepsy , 1973 .

[58]  M. Falconer The pathological substrate of temporal lobe epilepsy. , 1970, Guy's Hospital reports.

[59]  Falconer Ma The pathological substrate of temporal lobe epilepsy. , 1970 .

[60]  J. E. Cremer Journal of Cerebral Blood Flow and Metabolism Substrate Utilization and Brain Development , 2022 .