Phylogenetic Reconstruction for Copy-Number Evolution Problems

Cancer is known for its heterogeneity and is regarded as an evolutionary process driven by somatic mutations and clonal expansions. This evolutionary process can be modeled by a phylogenetic tree and phylogenetic analysis of multiple subclones of cancer cells can facilitate the study of the tumor variants progression. Copy-number aberration occurs frequently in many types of tumors in terms of segmental amplifications and deletions. In this paper, we developed a distance-based method for reconstructing phylogenies from copy-number profiles of cancer cells. We demonstrate the importance of distance correction from the edit (minimum) distance to the estimated actual number of events. Experimental results show that our approaches provide accurate and scalable results in estimating the actual number of evolutionary events between copy number profiles and in reconstructing phylogenies.

[1]  Tandy J. Warnow,et al.  Estimating true evolutionary distances between genomes , 2001, STOC '01.

[2]  Li-San Wang,et al.  Exact-IEBP: A New Technique for Estimating Evolutionary Distances between Whole Genomes , 2001, WABI.

[3]  D. Robinson,et al.  Comparison of phylogenetic trees , 1981 .

[4]  Jun Zhou,et al.  Maximum Parsimony Analysis of Gene Copy Number Changes , 2015, WABI.

[5]  Russell Schwartz,et al.  Algorithms to Model Single Gene, Single Chromosome, and Whole Genome Copy Number Changes Jointly in Tumor Phylogenetics , 2014, PLoS Comput. Biol..

[6]  Philip M. Kim,et al.  Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome , 2007, Science.

[7]  A. Shlien,et al.  Copy number variations and cancer , 2009, Genome Medicine.

[8]  A. Edwards,et al.  Assessing molecular phylogenies , 1995, Science.

[9]  S. Gabriel,et al.  Pan-cancer patterns of somatic copy-number alteration , 2013, Nature Genetics.

[10]  Yu Lin,et al.  Estimating true evolutionary distances under the DCJ model , 2008, ISMB.

[11]  J. Lupski,et al.  Mechanisms of change in gene copy number , 2009, Nature Reviews Genetics.

[12]  James D. Brenton,et al.  Phylogenetic Quantification of Intra-tumour Heterogeneity , 2013, PLoS Comput. Biol..

[13]  David Sankoff,et al.  Probability models for genome rearrangement and linear invariants for phylogenetic inference , 1999, RECOMB.

[14]  Jun Zhou,et al.  A Median Solver and Phylogenetic Inference Based on Double-Cut-and-Join Sorting , 2017, J. Comput. Biol..

[15]  Olivier Gascuel,et al.  FastME 2.0: A Comprehensive, Accurate, and Fast Distance-Based Phylogeny Inference Program , 2015, Molecular biology and evolution.

[16]  Ron Shamir,et al.  Copy-Number Evolution Problems: Complexity and Algorithms , 2016, WABI.

[17]  S. Swamy,et al.  PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data , 2009, Biostatistics.

[18]  Ali Bashashati,et al.  Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes , 2017, Nature Genetics.

[19]  Ron Shamir,et al.  A Linear-Time Algorithm for the Copy Number Transformation Problem , 2017, J. Comput. Biol..

[20]  Jun Zhou,et al.  Analysis of gene copy number changes in tumor phylogenetics , 2016, Algorithms for Molecular Biology.

[21]  Yu Lin,et al.  Estimating true evolutionary distances under rearrangements, duplications, and losses , 2010, BMC Bioinformatics.

[22]  Yu Lin,et al.  Bootstrapping Phylogenies Inferred from Rearrangement Data , 2011, WABI.

[23]  Tandy J. Warnow,et al.  Steps toward accurate reconstructions of phylogenies from gene-order data , 2002, J. Comput. Syst. Sci..

[24]  Russell Schwartz,et al.  Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from tumor cell populations , 2013, Bioinform..

[25]  T. Hubbard,et al.  A census of human cancer genes , 2004, Nature Reviews Cancer.

[26]  R. Weinberg,et al.  The Biology of Cancer , 2006 .

[27]  Jun Zhou,et al.  An Iterative Approach for Phylogenetic Analysis of Tumor Progression Using FISH Copy Number , 2015, ISBRA.