Minimum Cuts in Surface Graphs

We describe algorithms to efficiently compute minimum $(s,t)$-cuts and global minimum cuts of undirected surface-embedded graphs. Given an edge-weighted undirected graph $G$ with $n$ vertices embedded on an orientable surface of genus $g$, our algorithms can solve either problem in $g^{O(g)} n \log \log n$ or $2^{O(g)} n \log n$ time, whichever is better. When $g$ is a constant, our $g^{O(g)} n \log \log n$ time algorithms match the best running times known for computing minimum cuts in planar graphs. Our algorithms for minimum cuts rely on reductions to the problem of finding a minimum-weight subgraph in a given $\mathbb{Z}_2$-homology class, and we give efficient algorithms for this latter problem as well. If $G$ is embedded on a surface with $b$ boundary components, these algorithms run in $(g + b)^{O(g + b)} n \log \log n$ and $2^{O(g + b)} n \log n$ time. We also prove that finding a minimum-weight subgraph homologous to a single input cycle is NP-hard, showing it is likely impossible to improve upon the exponential dependencies on $g$ for this latter problem.

[1]  James B. Orlin,et al.  Max flows in O(nm) time, or better , 2013, STOC '13.

[2]  Swastik Kopparty,et al.  TO PLANAR GRAPHS , 2010 .

[3]  David Eppstein,et al.  All-Pairs Minimum Cuts in Near-Linear Time for Surface-Embedded Graphs , 2016, Symposium on Computational Geometry.

[4]  Kyle Fox,et al.  Global Minimum Cuts in Surface-Embedded Graphs , 2012, Encyclopedia of Algorithms.

[5]  Di Wang,et al.  Local Flow Partitioning for Faster Edge Connectivity , 2017, SODA.

[6]  Victor Y. Pan,et al.  Fast and Efficient Parallel Solution of Sparse Linear Systems , 1993, SIAM J. Comput..

[7]  Erik D. Demaine,et al.  Approximation algorithms via contraction decomposition , 2007, SODA '07.

[8]  Chao Chen,et al.  Quantifying Homology Classes , 2008, STACS.

[9]  G. Dantzig,et al.  Notes on Linear Programming: Part 1. The Generalized Simplex Method for Minimizing a Linear Form under Linear Inequality Restraints , 1954 .

[10]  Václav Koubek,et al.  Minimum cut in directed planar networks , 1992, Kybernetika.

[11]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[12]  A. Schrijver On the History of Combinatorial Optimization (Till 1960) , 2005 .

[13]  Naomi Nishimura,et al.  Characterizing Multiterminal Flow Networks and Computing Flows in Networks of Small Treewidth , 1998, J. Comput. Syst. Sci..

[14]  Michelangelo Grigni,et al.  Light spanners and approximate TSP in weighted graphs with forbidden minors , 2002, SODA '02.

[15]  Bundit Laekhanukit,et al.  Finding All Useless Arcs in Directed Planar Graphs , 2017, ArXiv.

[16]  Gary L. Miller,et al.  Flow in Planar Graphs with Multiple Sources and Sinks , 1995, SIAM J. Comput..

[17]  A. Charnes Optimality and Degeneracy in Linear Programming , 1952 .

[18]  David Eppstein,et al.  Dynamic generators of topologically embedded graphs , 2002, SODA '03.

[19]  Jonathan L. Gross,et al.  Finding a maximum-genus graph imbedding , 1988, JACM.

[20]  John E. Hopcroft,et al.  Linear time algorithm for isomorphism of planar graphs (Preliminary Report) , 1974, STOC '74.

[21]  Erin W. Chambers,et al.  Splitting (complicated) surfaces is hard , 2008, Comput. Geom..

[22]  Mechthild Stoer,et al.  A simple min-cut algorithm , 1997, JACM.

[23]  G. Ringel Map Color Theorem , 1974 .

[24]  Joshua R. Wang,et al.  Approximation and Fixed Parameter Subquadratic Algorithms for Radius and Diameter in Sparse Graphs , 2016, SODA.

[25]  Erin W. Chambers,et al.  Multiple-Source Shortest Paths in Embedded Graphs , 2012, SIAM J. Comput..

[26]  Hiroshi Imai,et al.  Efficient Sequential and Parallel Algorithms for Planar Minimum Cost Flow , 1990, SIGAL International Symposium on Algorithms.

[27]  Sergio Cabello,et al.  Finding shortest non-trivial cycles in directed graphs on surfaces , 2010, J. Comput. Geom..

[28]  David Hartvigsen,et al.  The All-Pairs Min Cut Problem and the Minimum Cycle Basis Problem on Planar Graphs , 1994, SIAM J. Discret. Math..

[29]  Andrew V. Goldberg,et al.  Beyond the flow decomposition barrier , 1998, JACM.

[30]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[31]  T. E. Harris,et al.  Fundamentals of a Method for Evaluating Rail Net Capacities , 1955 .

[32]  Karsten Weihe,et al.  Maximum s-t-flow with k crossings in O(k3n log n) time , 2007, SODA '07.

[33]  Philip N. Klein,et al.  Steiner Tree in Planar Graphs: An O ( n log n ) Approximation Scheme with Singly-Exponential Dependence on Epsilon , 2007, WADS.

[34]  David Eppstein Diameter and Treewidth in Minor-Closed Graph Families , 2000, Algorithmica.

[35]  G. Ringel,et al.  Solution of the heawood map-coloring problem. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Matthias Müller-Hannemann,et al.  Shortest paths in linear time on minor-closed graph classes, with an application to Steiner tree approximation , 2009, Discret. Appl. Math..

[37]  David Eppstein,et al.  Flows in One-Crossing-Minor-Free Graphs , 2010, ISAAC.

[38]  Toshihide Ibaraki,et al.  Computing Edge-Connectivity in Multigraphs and Capacitated Graphs , 1992, SIAM J. Discret. Math..

[39]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[40]  Jeff Erickson,et al.  Tightening non-simple paths and cycles on surfaces , 2006, SODA 2006.

[41]  David Cohen-Steiner,et al.  Computing geometry-aware handle and tunnel loops in 3D models , 2008, ACM Trans. Graph..

[42]  Gary L. Miller,et al.  Isomorphism testing for graphs of bounded genus , 1980, STOC '80.

[43]  Bojan Mohar,et al.  Finding one tight cycle , 2008, SODA '08.

[44]  Refael Hassin,et al.  An O(n log2 n) Algorithm for Maximum Flow in Undirected Planar Networks , 1985, SIAM J. Comput..

[45]  Glencora Borradaile,et al.  Minimum cycle and homology bases of surface-embedded graphs , 2017, J. Comput. Geom..

[46]  Greg N. Frederickson,et al.  Fast Algorithms for Shortest Paths in Planar Graphs, with Applications , 1987, SIAM J. Comput..

[47]  Kyle Fox,et al.  Holiest minimum-cost paths and flows in surface graphs , 2018, STOC.

[48]  Philip N. Klein,et al.  A polynomial-time approximation scheme for Steiner tree in planar graphs , 2007, SODA '07.

[49]  Satish Rao,et al.  Planar graphs, negative weight edges, shortest paths, and near linear time , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[50]  Csaba D. Tóth,et al.  Recognizing Weakly Simple Polygons , 2016, Symposium on Computational Geometry.

[51]  R. Ho Algebraic Topology , 2022 .

[52]  Karsten Weihe Maximum (s,t)-flows in planar networks in O(|V|log|V|) time , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[53]  Giovanni Rinaldi,et al.  Easy and difficult objective functions for max cut , 2003, Math. Program..

[54]  Haim Kaplan,et al.  Minimum s-t cut in undirected planar graphs when the source and the sink are close , 2011, STACS.

[55]  Éric Colin de Verdière Shortest Cut Graph of a Surface with Prescribed Vertex Set , 2010, ESA.

[56]  P. Wright,et al.  On Minimum Spanning Trees and Determinants , 2000 .

[57]  Jaikumar Radhakrishnan,et al.  Parametric Shortest Paths in Planar Graphs , 2018, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[58]  Pravin M. Vaidya,et al.  Speeding-up linear programming using fast matrix multiplication , 1989, 30th Annual Symposium on Foundations of Computer Science.

[59]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.

[60]  R KargerDavid Minimum cuts in near-linear time , 2000 .

[61]  Jeff Erickson,et al.  Maximum flows and parametric shortest paths in planar graphs , 2010, SODA '10.

[62]  Yin Tat Lee,et al.  Path Finding Methods for Linear Programming: Solving Linear Programs in Õ(vrank) Iterations and Faster Algorithms for Maximum Flow , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[63]  Glencora Borradaile,et al.  Multiple-Source Multiple-Sink Maximum Flow in Directed Planar Graphs in Near-Linear Time , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[64]  Jeff Erickson,et al.  Optimally Cutting a Surface into a Disk , 2002, SCG '02.

[65]  Martin Mareš Two linear time algorithms for MST on minor closed graph classes , 2002 .

[66]  Glencora Borradaile,et al.  Min st-cut Oracle for Planar Graphs with Near-Linear Preprocessing Time , 2010, FOCS.

[67]  Vijay V. Vazirani,et al.  Matching is as easy as matrix inversion , 1987, STOC.

[68]  Danupon Nanongkai,et al.  A deterministic near-linear time algorithm for finding minimum cuts in planar graphs , 2004, SODA '04.

[69]  Philip N. Klein,et al.  Multiple-source shortest paths in planar graphs , 2005, SODA '05.

[70]  Bojan Mohar,et al.  Finding Shortest Non-Separating and Non-Contractible Cycles for Topologically Embedded Graphs , 2007, Discret. Comput. Geom..

[71]  Glencora Borradaile,et al.  Polynomial-Time Approximation Schemes for Subset-Connectivity Problems in Bounded-Genus Graphs , 2012, Algorithmica.

[72]  Amir Nayyeri,et al.  Minimum cuts and shortest non-separating cycles via homology covers , 2011, SODA '11.

[73]  Erin W. Chambers,et al.  Homology flows, cohomology cuts , 2009, STOC '09.

[74]  James B. Orlin,et al.  A Faster Algorithm for Finding the Minimum Cut in a Directed Graph , 1994, J. Algorithms.

[75]  John H. Reif,et al.  Minimum s-t Cut of a Planar Undirected Network in O(n log2(n)) Time , 1983, SIAM J. Comput..

[76]  Kyle Fox Shortest Non-trivial Cycles in Directed and Undirected Surface Graphs , 2013, SODA.

[77]  Erin W. Chambers,et al.  Minimum cuts and shortest homologous cycles , 2009, SCG '09.

[78]  David R. Karger,et al.  Minimum cuts in near-linear time , 1998, JACM.

[79]  Ken-ichi Kawarabayashi,et al.  Deterministic Global Minimum Cut of a Simple Graph in Near-Linear Time , 2014, STOC.

[80]  Gauthier Lafruit,et al.  Adaptive 3D Content for Multi-Platform On-Line Games , 2007, CW 2007.

[81]  Chao Chen,et al.  Hardness Results for Homology Localization , 2010, SODA '10.

[82]  Philip N. Klein,et al.  An O (n log n) algorithm for maximum st-flow in a directed planar graph , 2006, SODA '06.

[83]  Glencora Borradaile,et al.  Minor-Free Graphs Have Light Spanners , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[84]  Ken-ichi Kawarabayashi,et al.  Deterministic Edge Connectivity in Near-Linear Time , 2014, J. ACM.

[85]  Aleksander Madry,et al.  Navigating Central Path with Electrical Flows: From Flows to Matchings, and Back , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[86]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[87]  Tamal K. Dey,et al.  Optimal Homologous Cycles, Total Unimodularity, and Linear Programming , 2011, SIAM J. Comput..

[88]  Piotr Sankowski,et al.  Improved algorithms for min cut and max flow in undirected planar graphs , 2011, STOC '11.

[89]  David Eppstein,et al.  The Polyhedral Approach to the Maximum Planar Subgraph Problem: New Chances for Related Problems , 1994, GD.

[90]  Samuel I. Daitch,et al.  Faster Lossy Generalized Flow via Interior Point Algorithms , 2008 .

[91]  Jeff Erickson,et al.  Greedy optimal homotopy and homology generators , 2005, SODA '05.

[92]  Tamal K. Dey,et al.  On Computing Handle and Tunnel Loops , 2007, 2007 International Conference on Cyberworlds (CW'07).

[93]  David K. Smith Network Flows: Theory, Algorithms, and Applications , 1994 .

[94]  Alon Itai,et al.  Maximum Flow in Planar Networks , 1979, SIAM J. Comput..

[95]  lexander,et al.  THE GENERALIZED SIMPLEX METHOD FOR MINIMIZING A LINEAR FORM UNDER LINEAR INEQUALITY RESTRAINTS , 2012 .

[96]  Philip N. Klein,et al.  Shortest paths in directed planar graphs with negative lengths: A linear-space O(n log2 n)-time algorithm , 2010, TALG.

[97]  Yahav Nussbaum,et al.  Minimum Cut of Directed Planar Graphs in O(n log log n) Time , 2015, SODA.

[98]  E. Felten,et al.  A Crystalline Approximation Theorem for Hypersurfaces , 1990 .

[99]  D. Rose,et al.  Generalized nested dissection , 1977 .

[100]  Michal Pilipczuk,et al.  Fully Polynomial-Time Parameterized Computations for Graphs and Matrices of Low Treewidth , 2015, SODA.

[101]  Jeff Erickson,et al.  Detecting Weakly Simple Polygons , 2015, SODA.

[102]  Sergio Cabello,et al.  Many Distances in Planar Graphs , 2006, SODA '06.

[103]  Philip N. Klein,et al.  Multiple-Source Multiple-Sink Maximum Flow in Directed Planar Graphs in Near-Linear Time , 2011, FOCS.

[104]  G. Borradaile,et al.  Exploiting Planarity for Network Flow and Connectivity Problems , 2008 .

[105]  J. Stillwell Classical topology and combinatorial group theory , 1980 .

[106]  Martin Kutz,et al.  Computing shortest non-trivial cycles on orientable surfaces of bounded genus in almost linear time , 2005, SCG '06.

[107]  Piotr Sankowski,et al.  Min-Cuts and Shortest Cycles in Planar Graphs in O(n loglogn) Time , 2011, ESA.

[108]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[109]  Jeff Erickson Shortest non-trivial cycles in directed surface graphs , 2011, SoCG '11.

[110]  Sergio Cabello Finding shortest contractible and shortest separating cycles in embedded graphs , 2010, TALG.

[111]  Chao Chen,et al.  Quantifying Homology Classes II: Localization and Stability , 2007, ArXiv.

[112]  Joshua A. Grochow,et al.  Computational topology and the Unique Games Conjecture , 2018, SoCG.