Fast isogeometric solvers for explicit dynamics

In finite element analysis, solving time-dependent partial differential equations with explicit time marching schemes requires repeatedly applying the inverse of the mass matrix. For mass matrices that can be expressed as tensor products of lower dimensional matrices, we present a direct method that has linear computational complexity, i.e., O(N)O(N), where NN is the total number of degrees of freedom in the system. We refer to these matrices as separable matrices. For non-separable mass matrices, we present a preconditioned conjugate gradient method with carefully designed preconditioners as an alternative. We demonstrate that these preconditioners, which are easy to construct and cheap to apply (O(N)O(N)), can deliver significant convergence acceleration. The performances of these preconditioners are independent of the polynomial order (p independence) and mesh resolution (h independence) for maximum continuity B-splines, as verified by various numerical tests.

[1]  T. Hughes,et al.  Isogeometric collocation for elastostatics and explicit dynamics , 2012 .

[2]  Luca F. Pavarino,et al.  Overlapping Schwarz Methods for Isogeometric Analysis , 2012, SIAM J. Numer. Anal..

[3]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[4]  O. Zienkiewicz,et al.  A note on mass lumping and related processes in the finite element method , 1976 .

[5]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[6]  Victor M. Calo,et al.  The Cost of Continuity: Performance of Iterative Solvers on Isogeometric Finite Elements , 2012, SIAM J. Sci. Comput..

[7]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[8]  V. Pereyra,et al.  Efficient Computer Manipulation of Tensor Products with Applications to Multidimensional Approximation , 1973 .

[9]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[10]  I. Akkerman,et al.  Isogeometric analysis of free-surface flow , 2011, J. Comput. Phys..

[11]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[12]  O. Axelsson Iterative solution methods , 1995 .

[13]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[14]  Willi-Hans Steeb,et al.  Matrix Calculus and the Kronecker Product with Applications and C++ Programs , 1997 .

[15]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[16]  John A. Evans,et al.  ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .

[17]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[18]  Alessandro Reali,et al.  Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations , 2013 .

[19]  Vassilios A. Dougalis,et al.  The Effect of Quadrature Errors on Finite Element Approximations for Second Order Hyperbolic Equations , 1976 .

[20]  Carl de Boor,et al.  Efficient Computer Manipulation of Tensor Products , 1979, TOMS.

[21]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[22]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[23]  Alessandro Reali,et al.  GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..

[24]  Giancarlo Sangalli,et al.  Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.

[25]  B. Daya Reddy Analysis of the finite element method , 1998 .

[26]  Victor M. Calo,et al.  The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers , 2012 .

[27]  J. Kraus,et al.  Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.

[28]  John Lysmer,et al.  Lumped mass method for Rayleigh waves , 1970, Bulletin of the Seismological Society of America.

[29]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[30]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[31]  Randall J. LeVeque,et al.  Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .

[32]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[33]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[34]  H. Schönheinz G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .

[35]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.