Fast isogeometric solvers for explicit dynamics
暂无分享,去创建一个
[1] T. Hughes,et al. Isogeometric collocation for elastostatics and explicit dynamics , 2012 .
[2] Luca F. Pavarino,et al. Overlapping Schwarz Methods for Isogeometric Analysis , 2012, SIAM J. Numer. Anal..
[3] Alessandro Reali,et al. Isogeometric Analysis of Structural Vibrations , 2006 .
[4] O. Zienkiewicz,et al. A note on mass lumping and related processes in the finite element method , 1976 .
[5] Thomas J. R. Hughes,et al. n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .
[6] Victor M. Calo,et al. The Cost of Continuity: Performance of Iterative Solvers on Isogeometric Finite Elements , 2012, SIAM J. Sci. Comput..
[7] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[8] V. Pereyra,et al. Efficient Computer Manipulation of Tensor Products with Applications to Multidimensional Approximation , 1973 .
[9] T. Hughes,et al. ISOGEOMETRIC COLLOCATION METHODS , 2010 .
[10] I. Akkerman,et al. Isogeometric analysis of free-surface flow , 2011, J. Comput. Phys..
[11] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[12] O. Axelsson. Iterative solution methods , 1995 .
[13] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[14] Willi-Hans Steeb,et al. Matrix Calculus and the Kronecker Product with Applications and C++ Programs , 1997 .
[15] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[16] John A. Evans,et al. ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .
[17] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[18] Alessandro Reali,et al. Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations , 2013 .
[19] Vassilios A. Dougalis,et al. The Effect of Quadrature Errors on Finite Element Approximations for Second Order Hyperbolic Equations , 1976 .
[20] Carl de Boor,et al. Efficient Computer Manipulation of Tensor Products , 1979, TOMS.
[21] Victor M. Calo,et al. The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .
[22] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[23] Alessandro Reali,et al. GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..
[24] Giancarlo Sangalli,et al. Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.
[25] B. Daya Reddy. Analysis of the finite element method , 1998 .
[26] Victor M. Calo,et al. The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers , 2012 .
[27] J. Kraus,et al. Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.
[28] John Lysmer,et al. Lumped mass method for Rayleigh waves , 1970, Bulletin of the Seismological Society of America.
[29] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .
[30] Åke Björck,et al. Numerical methods for least square problems , 1996 .
[31] Randall J. LeVeque,et al. Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .
[32] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[33] D. F. Rogers,et al. An Introduction to NURBS: With Historical Perspective , 2011 .
[34] H. Schönheinz. G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .
[35] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.