Studying the Basin of convergence of Methods for Computing periodic orbits

Starting from the well-known Newton's fractal which is formed by the basin of convergence of Newton's method applied to a cubic equation in one variable in the field ℂ, we were able to find methods for which the corresponding basins of convergence do not exhibit a fractal-like structure. Using this approach we are able to distinguish reliable and robust methods for tackling a specific problem. Also, our approach is illustrated here for methods for computing periodic orbits of nonlinear mappings as well as for fixed points of the Poincare map on a surface of section.

[1]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[2]  Matthaios Katsanikas,et al.  Chains of rotational Tori and Filamentary Structures Close to High Multiplicity periodic orbits in a 3D Galactic Potential , 2011, Int. J. Bifurc. Chaos.

[3]  Matthaios Katsanikas,et al.  The Structure and Evolution of confined Tori Near a Hamiltonian Hopf bifurcation , 2010, Int. J. Bifurc. Chaos.

[4]  Matthaios Katsanikas,et al.  The Structure of Invariant Tori in a 3D Galactic Potential , 2010, Int. J. Bifurc. Chaos.

[5]  Michael N. Vrahatis,et al.  Novel orbit based symmetric cryptosystems , 2010, Math. Comput. Model..

[6]  Michael N. Vrahatis,et al.  Particle Swarm Optimization and Intelligence: Advances and Applications , 2010 .

[7]  Katya Scheinberg,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[8]  Michael N. Vrahatis,et al.  A technique for the visualization of population-based algorithms , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[9]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[10]  Michael N. Vrahatis,et al.  On the computation of all global minimizers through particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[11]  G. Giorgi,et al.  Mathematics of Optimization: Smooth and Nonsmooth Case , 2004 .

[12]  M. N. Vrahatis,et al.  Deflation techniques for the determination of periodic solutions of a certain period , 2003 .

[13]  M. N. Vrahatis,et al.  On the application of optimization methods to the determination of members of families of periodic solutions , 2003 .

[14]  Michael N. Vrahatis,et al.  Computing periodic orbits of nondifferentiable/discontinuous mappings through particle swarm optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[15]  Michael N. Vrahatis,et al.  Efficient Method for Computing with Certainty Periodic Orbits on a Surface of Section , 2002 .

[16]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[17]  M. N. Vrahatis,et al.  Computing families of periodic orbits through optimization methods , 2001 .

[18]  Michael N. Vrahatis,et al.  Application of the Characteristic Bisection Method for locating and computing periodic orbits in molecular systems , 2001 .

[19]  Michael N. Vrahatis,et al.  Computing with certainty individual members of families of periodic orbits of a given period , 2001 .

[20]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[21]  S. Watt,et al.  A lattice refinement scheme for finding periodic orbits , 2000 .

[22]  H. Beyer Evolutionary algorithms in noisy environments : theoretical issues and guidelines for practice , 2000 .

[23]  M. N. Vrahatis,et al.  A class of gradient unconstrained minimization algorithms with adaptive stepsize - some corrections , 2000 .

[24]  Michael N. Vrahatis,et al.  Structure and Breakdown of Invariant Tori in a 4-D Mapping Model of Accelerator Dynamics , 1997 .

[25]  Michael N. Vrahatis,et al.  Geometry of learning: visualizing the performance of neural network supervised training methods , 1997 .

[26]  Clemens Elster,et al.  A method of trust region type for minimizing noisy functions , 1997, Computing.

[27]  Michael N. Vrahatis,et al.  PERIODIC ORBITS AND INVARIANT SURFACES OF 4D NONLINEAR MAPPINGS , 1996 .

[28]  M. N. Vrahatis,et al.  OPTAC: a portable software package for analyzing and comparing optimization methods by visualization , 1996 .

[29]  Michael N. Vrahatis,et al.  An efficient method for locating and computing periodic orbits of nonlinear mappings , 1995 .

[30]  G. Morriss,et al.  Chaos and its impact on the foundations of statistical mechanics , 1994 .

[31]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[32]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[33]  J. Bräuninger A variable metric algorithm for unconstrained minimization without evaluation of derivatives , 1981 .

[34]  I. Good,et al.  The Maximum Entropy Formalism. , 1979 .

[35]  Avinoam Perry,et al.  Technical Note - A Modified Conjugate Gradient Algorithm , 1978, Oper. Res..

[36]  A. Perry A Modified Conjugate Gradient Algorithm for Unconstrained Nonlinear Optimization , 1975 .

[37]  P. Wolfe Convergence Conditions for Ascent Methods. II: Some Corrections , 1971 .

[38]  P. Wolfe Convergence Conditions for Ascent Methods. II , 1969 .

[39]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[40]  M. E. Muller,et al.  A Note on the Generation of Random Normal Deviates , 1958 .

[41]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[42]  Cayley Desiderata and Suggestions: No. 3.The Newton-Fourier Imaginary Problem , 1879 .

[43]  M. N. Vrahatisa,et al.  Application of efficient composite methods for computing with certainty periodic orbits in molecular systems , 2001 .

[44]  M. N. Vrahatisa,et al.  Application of the Characteristic Bisection Method for locating and computing periodic orbits in molecular systems , 2000 .

[45]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[46]  Drossos,et al.  Method for computing long periodic orbits of dynamical systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[47]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[48]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[49]  Christopher A. Sikorski Optimal solution of nonlinear equations , 1985, J. Complex..

[50]  E. T. Jaynes,et al.  Where do we Stand on Maximum Entropy , 1979 .

[51]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .

[52]  L. Armijo Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .

[53]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[54]  S. Banach Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales , 1922 .