Development, modeling and application of piezoelectric fiber composites

Piezoelectric materials are capable of actuation and sensing and have been used in a wide variety of smart devices and structures. Active fiber composite and macro fiber composite are newly developed types of piezoelectric composites, and show superior properties to monolithic piezoelectric wafer due to their distinctive structures. Numerous work has focused on the performance prediction of the composites by evaluation of structural parameters and properties of the constituent materials with analytical and numerical methods. Various applications have been explored for the piezoelectric fiber composites, including vibration and noise control, health monitoring, morphing of structures and energy harvesting, in which the composites play key role and demonstrate the necessity for further development.

[1]  Marcias J Martinez,et al.  Finite element analysis of broken fiber effects on the performance of active fiber composites , 2009 .

[2]  Vivek Bharti,et al.  HIGH ELECTROSTRICTIVE STRAIN UNDER HIGH MECHANICAL STRESS IN ELECTRON-IRRADIATED POLY(VINYLIDENE FLUORIDE-TRIFLUOROETHYLENE) COPOLYMER , 1999 .

[3]  K. Tungpimolrut,et al.  Design of energy harvester circuit for a MFC piezoelectric based on electrical circuit modeling , 2011, 2011 International Symposium on Applications of Ferroelectrics (ISAF/PFM) and 2011 International Symposium on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials.

[4]  S. Cochran,et al.  Piezoelectric 1–3 Composites for High Frequency Ultrasonic Transducer Applications , 2004 .

[5]  Daniel J. Inman,et al.  Nonlinear Response of the Macro Fiber Composite Actuator to Monotonically Increasing Excitation Voltage , 2006 .

[6]  Anindya Ghoshal,et al.  Active fiber composites for structural health monitoring , 2000, Smart Structures.

[7]  Ramamoorthy Ramesh,et al.  Virus-based piezoelectric energy generation. , 2012, Nature nanotechnology.

[8]  D. Inman,et al.  Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries , 2005 .

[9]  Nesbitt W. Hagood,et al.  Improving transverse actuation of piezoceramics using interdigitated surface electrodes , 1993, Smart Structures.

[10]  S. Raja,et al.  Deflection and Vibration Control of Laminated Plates Using Extension and Shear Actuated Fiber Composites , 2011 .

[11]  G. Rossetti,et al.  Recent advances in active fiber composites technology , 2000, ISAF 2000. Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics (IEEE Cat. No.00CH37076).

[12]  Viresh Wickramasinghe,et al.  Material characterization of active fiber composites for integral twist-actuated rotor blade application , 2004 .

[13]  David J. Warkentin,et al.  Modeling and electrode optimization for torsional IDE piezoceramics , 2000, Smart Structures.

[14]  C. Randall,et al.  Addition of a Sr, K, Nb (SKN) Combination to PZT(53/47) for High Strain Applications , 2007 .

[15]  N. Hagood,et al.  Piezoelectric Fiber Composites with Interdigitated Electrodes , 1997 .

[16]  Nesbitt W. Hagood,et al.  Improved performance in piezoelectric fiber composites using interdigitated electrodes , 1995, Smart Structures.

[17]  Nesbitt W. Hagood,et al.  Performance characterization of active fiber-composite actuators for helicopter rotor blade applications , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[18]  W. Beckert,et al.  Modelling piezoelectric modules with interdigitated electrode structures , 2003 .

[19]  Seung-Bok Choi,et al.  Vibration control of smart hull structure with optimally placed piezoelectric composite actuators , 2011 .

[20]  Yutian Ding,et al.  Magnetostriction and structural characterization of Fe–Ga bulk alloy prepared by copper mold casting , 2012 .

[21]  L. Nelson Characterisation and modelling of active fibre composites , 2005 .

[22]  Kenji Uchino,et al.  Advanced piezoelectric materials , 2010 .

[23]  Temperature dependence of dielectric and piezoelectric properties of PLZT-PZN ceramic tapes , 2008 .

[24]  Daniel J. Inman,et al.  An outlier analysis of MFC-based impedance sensing data for wireless structural health monitoring of railroad tracks , 2008 .

[25]  Yong Chen,et al.  Development and verification of real-time controllers for the F/A-18 vertical fin buffet load alleviation , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[26]  Daniel J. Inman,et al.  Control of a Space Rigidizable Inflatable Boom Using Macro-fiber Composite Actuators , 2007 .

[27]  Paul H. Mirick,et al.  Low-cost piezocomposite actuator for structural control applications , 2000, Smart Structures.

[28]  R. B. Williams,et al.  Nonlinear Tensile and Shear Behavior of Macro Fiber Composite Actuators , 2004 .

[29]  Eckhard Quandt,et al.  Magnetostrictive actuation in microsystems , 2000 .

[30]  Hajime Nagata,et al.  Current status and prospects of lead-free piezoelectric ceramics , 2005 .

[31]  Christopher R. Bowen,et al.  Optimisation of interdigitated electrodes for piezoelectric actuators and active fibre composites , 2006 .

[32]  Norman M. Wereley,et al.  Energy Harvesting Devices Using Macro-fiber Composite Materials , 2010 .

[33]  T. Takeda,et al.  Nonlinear electromechanical fields and localized polarization switching of piezoelectric macrofiber composites , 2011 .

[34]  Rolf Paradies,et al.  Active wing design with integrated flight control using piezoelectric macro fiber composites , 2009 .

[35]  Daniel J. Inman,et al.  Manufacturing and Mechanics-Based Characterization of Macro Fiber Composite Actuators , 2002 .

[36]  Dineshkumar Harursampath,et al.  Asymptotically correct micro-mechanical model for non-linear behavior of piezo-fiber reinforced composites , 2009, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[37]  K. O’Grady,et al.  柔軟記録媒体のための金属粒子(MP)技術の開発 , 2008 .

[38]  R. Paradies,et al.  Numerical Stress Investigation for Piezoelectric Elements with a Circular Cross Section and Interdigitated Electrodes , 2007 .

[39]  H. Brussel,et al.  Production of shape memory alloys for microactuation , 1994 .

[40]  Mark Melnykowycz,et al.  State of stress in piezoelectric elements with interdigitated electrodes , 2010 .

[41]  Zhangjian Zhou,et al.  Evaluation of ultra-fine grained tungsten under transient high heat flux by high-intensity pulsed ion beam , 2012 .

[42]  Carlos E. S. Cesnik,et al.  On the modeling of integrally actuated helicopter blades , 2001 .

[43]  Daniel J. Inman,et al.  TEMPERATURE-DEPENDENT THERMOELASTIC PROPERTIES FOR MACRO FIBER COMPOSITE ACTUATORS , 2004 .

[44]  Yaowen Yang,et al.  Vibration energy harvesting using macro-fiber composites , 2009 .

[45]  K. Lam,et al.  Lead-free piezoelectric single crystal based 1–3 composites for ultrasonic transducer applications , 2012 .

[46]  Robert E. Newnham,et al.  Functional composites for sensors, actuators and transducers , 1999 .

[47]  Takashi Yamamoto,et al.  Ferroelectric Properties of the PbZrO3–PbTiO3 System , 1996 .

[48]  Aaron Alton Bent,et al.  Active fiber composites for structural actuation , 1997 .

[49]  Daniel J. Inman,et al.  An experimental comparison between several active composite actuators for power generation , 2006 .

[50]  M. Jiang,et al.  Structure and piezoelectric properties of (1–x)K0.5Na0.5NbO3–xLiBiO3 lead-free piezoelectric ceramics , 2012 .

[51]  Seung-Bok Choi,et al.  Vibration Control of a Cylindrical Shell Structure Using Macro Fiber Composite Actuators , 2011 .

[52]  Chee Kiong Soh,et al.  Health monitoring of cylindrical structures using torsional wave generated by piezoelectric macro-fiber composite , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[53]  Jayanth N. Kudva,et al.  Morphing aircraft concepts, classifications, and challenges , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.