Latent Variable Modelling with Hyperbolic Normalizing Flows

The choice of approximate posterior distributions plays a central role in stochastic variational inference (SVI). One effective solution is the use of normalizing flows \cut{defined on Euclidean spaces} to construct flexible posterior distributions. However, one key limitation of existing normalizing flows is that they are restricted to the Euclidean space and are ill-equipped to model data with an underlying hierarchical structure. To address this fundamental limitation, we present the first extension of normalizing flows to hyperbolic spaces. We first elevate normalizing flows to hyperbolic spaces using coupling transforms defined on the tangent bundle, termed Tangent Coupling ($\mathcal{TC}$). We further introduce Wrapped Hyperboloid Coupling ($\mathcal{W}\mathbb{H}C$), a fully invertible and learnable transformation that explicitly utilizes the geometric structure of hyperbolic spaces, allowing for expressive posteriors while being efficient to sample from. We demonstrate the efficacy of our novel normalizing flow over hyperbolic VAEs and Euclidean normalizing flows. Our approach achieves improved performance on density estimation, as well as reconstruction of real-world graph data, which exhibit a hierarchical structure. Finally, we show that our approach can be used to power a generative model over hierarchical data using hyperbolic latent variables.

[1]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[2]  Ruslan Salakhutdinov,et al.  Importance Weighted Autoencoders , 2015, ICLR.

[3]  Christopher De Sa,et al.  Numerically Accurate Hyperbolic Embeddings Using Tiling-Based Models , 2019, NeurIPS.

[4]  Jun Zhu,et al.  Kernel Implicit Variational Inference , 2017, ICLR.

[5]  David Duvenaud,et al.  FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models , 2018, ICLR.

[6]  Yee Whye Teh,et al.  Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders , 2019, NeurIPS.

[7]  Renjie Liao,et al.  Lorentzian Distance Learning for Hyperbolic Representations , 2019, ICML.

[8]  Razvan Pascanu,et al.  Hyperbolic Attention Networks , 2018, ICLR.

[9]  Nicola De Cao,et al.  Hyperspherical Variational Auto-Encoders , 2018, UAI 2018.

[10]  Ruslan Salakhutdinov,et al.  Revisiting Semi-Supervised Learning with Graph Embeddings , 2016, ICML.

[11]  Valentin Khrulkov,et al.  Hyperbolic Image Embeddings , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Bernhard Schölkopf,et al.  Wasserstein Auto-Encoders , 2017, ICLR.

[13]  M. DePamphilis,et al.  HUMAN DISEASE , 1957, The Ulster Medical Journal.

[14]  Yannick Berthoumieu,et al.  New Riemannian Priors on the Univariate Normal Model , 2014, Entropy.

[15]  Shakir Mohamed,et al.  Normalizing Flows on Riemannian Manifolds , 2016, ArXiv.

[16]  Marcus A. Brubaker,et al.  Normalizing Flows: Introduction and Ideas , 2019, ArXiv.

[17]  William Yang Wang,et al.  Riemannian Normalizing Flow on Variational Wasserstein Autoencoder for Text Modeling , 2019, NAACL.

[18]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[19]  Alexandre Lacoste,et al.  Neural Autoregressive Flows , 2018, ICML.

[20]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[21]  Ivan Kobyzev,et al.  Normalizing Flows: An Introduction and Review of Current Methods , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[23]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[24]  Jure Leskovec,et al.  Hyperbolic Graph Convolutional Neural Networks , 2019, NeurIPS.

[25]  Douwe Kiela,et al.  Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geometry , 2018, ICML.

[26]  P. Kaye Infectious diseases of humans: Dynamics and control , 1993 .

[27]  J. Ratcliffe Foundations of Hyperbolic Manifolds , 2019, Graduate Texts in Mathematics.

[28]  Douwe Kiela,et al.  Hyperbolic Graph Neural Networks , 2019, NeurIPS.

[29]  Gurtej Kanwar,et al.  Normalizing Flows on Tori and Spheres , 2020, ICML.

[30]  Jun Zhu,et al.  A Spectral Approach to Gradient Estimation for Implicit Distributions , 2018, ICML.

[31]  Thomas Hofmann,et al.  Hyperbolic Neural Networks , 2018, NeurIPS.

[32]  Lorenzo Livi,et al.  Adversarial Autoencoders with Constant-Curvature Latent Manifolds , 2019, Appl. Soft Comput..

[33]  Pietro Liò,et al.  Graph Attention Networks , 2017, ICLR.

[34]  Patrick Forré,et al.  Reparameterizing Distributions on Lie Groups , 2019, AISTATS.

[35]  Rik Sarkar,et al.  Low Distortion Delaunay Embedding of Trees in Hyperbolic Plane , 2011, GD.

[36]  Xavier Pennec,et al.  Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.

[37]  Chong Wang,et al.  Stochastic variational inference , 2012, J. Mach. Learn. Res..

[38]  Nicola De Cao,et al.  Block Neural Autoregressive Flow , 2019, UAI.

[39]  Eric Nalisnick,et al.  Normalizing Flows for Probabilistic Modeling and Inference , 2019, J. Mach. Learn. Res..

[40]  Andrew M. Dai,et al.  Embedding Text in Hyperbolic Spaces , 2018, TextGraphs@NAACL-HLT.

[41]  Renjie Liao,et al.  Efficient Graph Generation with Graph Recurrent Attention Networks , 2019, NeurIPS.

[42]  Douwe Kiela,et al.  Poincaré Embeddings for Learning Hierarchical Representations , 2017, NIPS.

[43]  Siu Cheung Hui,et al.  Hyperbolic Representation Learning for Fast and Efficient Neural Question Answering , 2017, WSDM.

[44]  Kyle Cranmer,et al.  Flows for simultaneous manifold learning and density estimation , 2020, NeurIPS.

[45]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[46]  Max Welling,et al.  Variational Graph Auto-Encoders , 2016, ArXiv.

[47]  Marc Peter Deisenroth,et al.  Neural Embeddings of Graphs in Hyperbolic Space , 2017, ArXiv.

[48]  Ivan Ovinnikov,et al.  Poincaré Wasserstein Autoencoder , 2019, ArXiv.

[49]  Tianqi Chen,et al.  Empirical Evaluation of Rectified Activations in Convolutional Network , 2015, ArXiv.

[50]  Richard E. Turner,et al.  Gradient Estimators for Implicit Models , 2017, ICLR.

[51]  S. Golomb Polyominoes: Puzzles, Patterns, Problems, and Packings , 1994 .

[52]  Shoichiro Yamaguchi,et al.  A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning , 2019, ICML.

[53]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[54]  Aviral Kumar,et al.  Graph Normalizing Flows , 2019, NeurIPS.