Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems

Microbial electrochemical techniques describe a variety of emerging technologies that use electrode–bacteria interactions for biotechnology applications including the production of electricity, waste and wastewater treatment, bioremediation and the production of valuable products. Central in each application is the ability of the microbial catalyst to interact with external electron acceptors and/or donors and its metabolic properties that enable the combination of electron transport and carbon metabolism. And here also lies the key challenge. A wide range of microbes has been discovered to be able to exchange electrons with solid surfaces or mediators but only a few have been studied in depth. Especially electron transfer mechanisms from cathodes towards the microbial organism are poorly understood but are essential for many applications such as microbial electrosynthesis. We analyze the different electron transport chains that nature offers for organisms such as metal respiring bacteria and acetogens, but also standard biotechnological organisms currently used in bio-production. Special focus lies on the essential connection of redox and energy metabolism, which is often ignored when studying bioelectrochemical systems. The possibility of extracellular electron exchange at different points in each organism is discussed regarding required redox potentials and effect on cellular redox and energy levels. Key compounds such as electron carriers (e.g., cytochromes, ferredoxin, quinones, flavins) are identified and analyzed regarding their possible role in electrode–microbe interactions. This work summarizes our current knowledge on electron transport processes and uses a theoretical approach to predict the impact of different modes of transfer on the energy metabolism. As such it adds an important piece of fundamental understanding of microbial electron transport possibilities to the research community and will help to optimize and advance bioelectrochemical techniques.

[1]  Leonard M. Tender,et al.  Reply to the ‘Comment on “On electrical conductivity of microbial nanowires and biofilms”’ by N. S. Malvankar, M. T. Tuominen and D. R. Lovley, Energy Environ. Sci., 2012, 5, DOI: 10.1039/c2ee02613a , 2012 .

[2]  Tian Zhang,et al.  Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. , 2010, Environmental microbiology.

[3]  G. Diekert,et al.  Metabolism of homoacetogens , 2004, Antonie van Leeuwenhoek.

[4]  A. Price-Whelan,et al.  An Aerobic Exercise: Defining the Roles of Pseudomonas aeruginosa Terminal Oxidases , 2014, Journal of bacteriology.

[5]  Derek R. Lovley,et al.  Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer , 2009 .

[6]  D. Newman,et al.  Extracellular electron transfer , 2001, Cellular and Molecular Life Sciences CMLS.

[7]  P. Macheroux,et al.  Flavin-dependent quinone reductases , 2007, Cellular and Molecular Life Sciences.

[8]  Dan Coursolle,et al.  Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR‐1 , 2010, Molecular microbiology.

[9]  H. Drake,et al.  Old Acetogens, New Light , 2008, Annals of the New York Academy of Sciences.

[10]  Ashley E. Franks,et al.  Microbial Fuel Cells, A Current Review , 2010 .

[11]  Jens Schrader,et al.  Electroactive bacteria—molecular mechanisms and genetic tools , 2014, Applied Microbiology and Biotechnology.

[12]  C. Leang,et al.  Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. , 2003, The Biochemical journal.

[13]  M. C. Potter Electrical Effects Accompanying the Decomposition of Organic Compounds. II. Ionisation of the Gases Produced during Fermentation , 1911 .

[14]  Derek R. Lovley,et al.  Biofilm and Nanowire Production Leads to Increased Current in Geobacter sulfurreducens Fuel Cells , 2006, Applied and Environmental Microbiology.

[15]  J. Gescher,et al.  Dissimilatory Reduction of Extracellular Electron Acceptors in Anaerobic Respiration , 2011, Applied and Environmental Microbiology.

[16]  U. Schröder,et al.  A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. , 2003, Angewandte Chemie.

[17]  D. Beratan,et al.  Electron transfer mechanisms. , 1998, Current opinion in chemical biology.

[18]  Bruno M. Fonseca,et al.  Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1. , 2013, The Biochemical journal.

[19]  Yasushi Noguchi,et al.  The energetic conversion competence of Escherichia coli during aerobic respiration studied by 31P NMR using a circulating fermentation system. , 2004, Journal of biochemistry.

[20]  Derek R. Lovley,et al.  Lactose-Inducible System for Metabolic Engineering of Clostridium ljungdahlii , 2014, Applied and Environmental Microbiology.

[21]  J. Møller,et al.  Structural organization, ion transport, and energy transduction of P-type ATPases. , 1996, Biochimica et biophysica acta.

[22]  Jens O Krömer,et al.  Electrifying white biotechnology: engineering and economic potential of electricity-driven bio-production. , 2015, ChemSusChem.

[23]  A. Rosato,et al.  Cytochrome c: occurrence and functions. , 2006, Chemical reviews.

[24]  C. Leang,et al.  The Rnf Complex of Clostridium ljungdahlii Is a Proton-Translocating Ferredoxin:NAD+ Oxidoreductase Essential for Autotrophic Growth , 2012, mBio.

[25]  Jeffrey A. Gralnick,et al.  Towards Electrosynthesis in Shewanella: Energetics of Reversing the Mtr Pathway for Reductive Metabolism , 2011, PloS one.

[26]  Claire Dumas,et al.  Microbial electrocatalysis with Geobacter sulfurreducensbiofilm on stainless steel cathodes , 2008 .

[27]  H. Schairer,et al.  Electron-transport chains of Escherichia coli. Reconstitution of respiration in a 5-aminolaevulinic acid-requiring mutant. , 1973, European journal of biochemistry.

[28]  S. Hs,et al.  Electrically enhanced ethanol fermentation by Clostridium thermocellum and Saccharomyces cerevisiae , 2002 .

[29]  Samantha B. Reed,et al.  Reduction of nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA , 2009, The ISME Journal.

[30]  Manfred Auer,et al.  Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria , 2012, Proceedings of the National Academy of Sciences.

[31]  Derek R. Lovley,et al.  Structural Basis for Metallic-Like Conductivity in Microbial Nanowires , 2015, mBio.

[32]  Byoung-Chan Kim,et al.  Tunable metallic-like conductivity in microbial nanowire networks. , 2011, Nature nanotechnology.

[33]  M. Inui,et al.  Corynebacterium glutamicum: Biology and Biotechnology , 2013 .

[34]  B. Logan Exoelectrogenic bacteria that power microbial fuel cells , 2009, Nature Reviews Microbiology.

[35]  M. Hochella,et al.  Putative Mineral-Specific Proteins Synthesized by a Metal Reducing Bacterium , 2005 .

[36]  R. Thauer,et al.  Electron Bifurcation Involved in the Energy Metabolism of the Acetogenic Bacterium Moorella thermoacetica Growing on Glucose or H2 plus CO2 , 2012, Journal of bacteriology.

[37]  P. Dürre,et al.  Pathway engineering and synthetic biology using acetogens , 2012, FEBS letters.

[38]  J. W. Peters,et al.  Electron bifurcation. , 2016, Current opinion in chemical biology.

[39]  Derek R. Lovley,et al.  Comment on “On electrical conductivity of microbial nanowires and biofilms” by S. M. Strycharz-Glaven, R. M. Snider, A. Guiseppi-Elie and L. M. Tender, Energy Environ. Sci., 2011, 4, 4366 , 2012 .

[40]  A. Okamoto,et al.  Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones , 2013, Proceedings of the National Academy of Sciences.

[41]  G. Unden,et al.  Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. , 1997, Biochimica et biophysica acta.

[42]  D. Lovley,et al.  Purification and Characterization of OmcZ, an Outer-Surface, Octaheme c-Type Cytochrome Essential for Optimal Current Production by Geobacter sulfurreducens , 2010, Applied and Environmental Microbiology.

[43]  W. Verstraete,et al.  Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer , 2004, Applied and Environmental Microbiology.

[44]  W. Verstraete,et al.  Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation , 2008, Applied Microbiology and Biotechnology.

[45]  H. Bahl,et al.  Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. , 2011, Current opinion in biotechnology.

[46]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[47]  Y. Anraku Bacterial electron transport chains. , 1988, Annual review of biochemistry.

[48]  J. C. Thrash,et al.  Review: Direct and indirect electrical stimulation of microbial metabolism. , 2008, Environmental science & technology.

[49]  Paul C Mills,et al.  Characterization of an electron conduit between bacteria and the extracellular environment , 2009, Proceedings of the National Academy of Sciences.

[50]  C. Myers,et al.  Role of the Tetraheme Cytochrome CymA in Anaerobic Electron Transport in Cells of Shewanella putrefaciens MR-1 with Normal Levels of Menaquinone , 2000, Journal of bacteriology.

[51]  P. Dürre,et al.  Clostridium ljungdahlii represents a microbial production platform based on syngas , 2010, Proceedings of the National Academy of Sciences.

[52]  Byung Hong Kim,et al.  Electron flow shift inClostridiumacetobutylicum fermentation by electrochemically introduced reducing equivalent , 1988, Biotechnology Letters.

[53]  Largus T Angenent,et al.  Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? , 2011, Bioresource technology.

[54]  K. Straub,et al.  Iron metabolism in anoxic environments at near neutral pH. , 2001, FEMS microbiology ecology.

[55]  A. Spormann,et al.  Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases , 2008, Molecular microbiology.

[56]  V. Müller,et al.  The Ferredoxin:NAD+ Oxidoreductase (Rnf) from the Acetogen Acetobacterium woodii Requires Na+ and Is Reversibly Coupled to the Membrane Potential* , 2013, The Journal of Biological Chemistry.

[57]  K. Rabaey,et al.  Microbial electrosynthesis — revisiting the electrical route for microbial production , 2010, Nature Reviews Microbiology.

[58]  Hye Suk Byun,et al.  Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components , 2014, Proceedings of the National Academy of Sciences.

[59]  Volker Müller,et al.  Discovery of a Ferredoxin:NAD+‐Oxidoreductase (Rnf) in Acetobacterium woodii , 2008, Annals of the New York Academy of Sciences.

[60]  Korneel Rabaey,et al.  Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies , 2012, Science.

[61]  R. Bernhardt,et al.  Cytochrome P450 systems--biological variations of electron transport chains. , 2007, Biochimica et biophysica acta.

[62]  A. Khalatbary,et al.  IN VIVO StUDies , 2016 .

[63]  L. Piterman,et al.  Aerobic exercise. , 1984, Australian family physician.

[64]  V. Müller,et al.  A Bacterial Electron-bifurcating Hydrogenase* , 2012, The Journal of Biological Chemistry.

[65]  A. Kondo,et al.  Increase in lactate yield by growing Corynebacterium glutamicum in a bioelectrochemical reactor. , 2014, Journal of bioscience and bioengineering.

[66]  M. Bott,et al.  The respiratory chain of Corynebacterium glutamicum. , 2003, Journal of biotechnology.

[67]  J A Eisen,et al.  Genome of Geobacter sulfurreducens: Metal Reduction in Subsurface Environments , 2003, Science.

[68]  J. C. Thrash,et al.  Evidence for Direct Electron Transfer by a Gram-Positive Bacterium Isolated from a Microbial Fuel Cell , 2011, Applied and Environmental Microbiology.

[69]  R. Norman,et al.  Electrosynthesis of Commodity Chemicals by an Autotrophic Microbial Community , 2012, Applied and Environmental Microbiology.

[70]  D. R. Bond,et al.  Electricity Production by Geobacter sulfurreducens Attached to Electrodes , 2003, Applied and Environmental Microbiology.

[71]  M. Dolin CHAPTER 6 – Survey of Microbial Electron Transport Mechanisms , 1961 .

[72]  V. Müller,et al.  Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes , 2011, Cellular and Molecular Life Sciences.

[73]  Derek R. Lovley,et al.  Graphite Electrode as a Sole Electron Donor for Reductive Dechlorination of Tetrachlorethene by Geobacter lovleyi , 2008, Applied and Environmental Microbiology.

[74]  D. Richardson,et al.  The periplasmic nitrate reductase in Shewanella: the resolution, distribution and functional implications of two NAP isoforms, NapEDABC and NapDAGHB. , 2010, Microbiology.

[75]  Andreas Englert,et al.  Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation. , 2010, Environmental science & technology.

[76]  Ching Leang,et al.  Regulation of two highly similar genes, omcB and omcC, in a 10 kb chromosomal duplication in Geobacter sulfurreducens. , 2005, Microbiology.

[77]  Tian Zhang,et al.  Electrifying microbes for the production of chemicals , 2015, Front. Microbiol..

[78]  R. Hozalski,et al.  Microbial Biofilm Voltammetry: Direct Electrochemical Characterization of Catalytic Electrode-Attached Biofilms , 2008, Applied and Environmental Microbiology.

[79]  D. Richardson,et al.  Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals , 2013, Proceedings of the National Academy of Sciences.

[80]  K. Rosso,et al.  Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: a genomic perspective. , 2012, Biochemical Society transactions.

[81]  M. Romine,et al.  The octahaem SirA catalyses dissimilatory sulfite reduction in Shewanella oneidensis MR-1. , 2011, Environmental microbiology.

[82]  R. Thauer,et al.  Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. , 2013, Biochimica et biophysica acta.

[83]  A. Okamoto,et al.  Uptake of self-secreted flavins as bound cofactors for extracellular electron transfer in Geobacter species , 2014 .

[84]  V. Müller,et al.  Energy Conservation in Acetogenic Bacteria , 2003, Applied and Environmental Microbiology.

[85]  Andreas Kappler,et al.  Phenazines and Other Redox-Active Antibiotics Promote Microbial Mineral Reduction , 2004, Applied and Environmental Microbiology.

[86]  E. Jayamani,et al.  Energy Conservation via Electron-Transferring Flavoprotein in Anaerobic Bacteria , 2007, Journal of bacteriology.

[87]  Liang Shi,et al.  The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. , 2009, Environmental microbiology reports.

[88]  S. Chapman,et al.  An octaheme c‐type cytochrome from Shewanella oneidensis can reduce nitrite and hydroxylamine , 2007, FEBS letters.

[89]  Lo Gorton,et al.  Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems , 2012 .

[90]  V. Müller,et al.  Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria , 2014, Nature Reviews Microbiology.

[91]  Caroline M. Ajo-Franklin,et al.  The Mtr Pathway of Shewanella oneidensis MR‐1 Couples Substrate Utilization to Current Production in Escherichia coli , 2014 .

[92]  Frauke Kracke,et al.  Identifying target processes for microbial electrosynthesis by elementary mode analysis , 2014, BMC Bioinformatics.

[93]  Bruce E Cohen,et al.  Engineering of a synthetic electron conduit in living cells , 2010, Proceedings of the National Academy of Sciences.

[94]  H. May,et al.  Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica , 2009 .

[95]  P. Vignais,et al.  Occurrence, classification, and biological function of hydrogenases: an overview. , 2007, Chemical reviews.

[96]  Byoung-Chan Kim,et al.  Anode Biofilm Transcriptomics Reveals Outer Surface Components Essential for High Density Current Production in Geobacter sulfurreducens Fuel Cells , 2009, PloS one.

[97]  Hanxi Yang,et al.  A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. , 2006, Chemical communications.

[98]  Bernhard Schink,et al.  Enhanced Propionate Formation by Propionibacterium freudenreichii subsp. freudenreichii in a Three-Electrode Amperometric Culture System , 1990, Applied and environmental microbiology.

[99]  G. Giordano,et al.  Molecular analysis of the trimethylamine N-oxide (TMAO) reductase respiratory system from a Shewanella species. , 1998, Journal of molecular biology.

[100]  M. Inui,et al.  Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor , 2007, Applied Microbiology and Biotechnology.

[101]  Janet B. Rollefson,et al.  Energetic and Molecular Constraints on the Mechanism of Environmental Fe(III) Reduction by Geobacter , 2013 .

[102]  J. Fredrickson,et al.  Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes , 2007, Molecular microbiology.

[103]  T. Arakawa,et al.  Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens. , 2011, Biochimica et biophysica acta.

[104]  A. Franks What's Current with Electric Microbes? , 2012 .

[105]  Byoung-Chan Kim,et al.  Insights into genes involved in electricity generation in Geobacter sulfurreducens via whole genome microarray analysis of the OmcF-deficient mutant. , 2008, Bioelectrochemistry.

[106]  D. Newman,et al.  Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[107]  O. White,et al.  Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis , 2002, Nature Biotechnology.

[108]  P. Dobbin,et al.  Characterization of the Shewanella oneidensis MR-1 Decaheme Cytochrome MtrA , 2003, Journal of Biological Chemistry.

[109]  Jochen Blumberger,et al.  Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities , 2015, Journal of The Royal Society Interface.

[110]  Kelly P. Nevin,et al.  Dissimilatory Fe(III) and Mn(IV) reduction. , 1991, Advances in microbial physiology.

[111]  M. Berlyn,et al.  Linkage Map of Escherichia coli K-12, Edition 10: The Traditional Map , 1998, Microbiology and Molecular Biology Reviews.

[112]  Hong Liu,et al.  Design of microbial fuel cells for practical application: a review and analysis of scale-up studies , 2014 .

[113]  R. Thauer,et al.  A Reversible Electron-Bifurcating Ferredoxin- and NAD-Dependent [FeFe]-Hydrogenase (HydABC) in Moorella thermoacetica , 2013, Journal of bacteriology.

[114]  Sang Yup Lee,et al.  Metabolic Engineering of Clostridium acetobutylicum ATCC 824 for Isopropanol-Butanol-Ethanol Fermentation , 2011, Applied and Environmental Microbiology.

[115]  Derek R. Lovley,et al.  Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds , 2010, mBio.

[116]  Yan Qiao,et al.  Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells. , 2008, Chemical communications.

[117]  O. Choi,et al.  Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor , 2012, Biotechnology and bioengineering.

[118]  Derek R Lovley,et al.  Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. , 2006, Environmental microbiology.

[119]  T. Mehta,et al.  Outer Membrane c-Type Cytochromes Required for Fe(III) and Mn(IV) Oxide Reduction in Geobacter sulfurreducens , 2005, Applied and Environmental Microbiology.

[120]  K. Schleifer,et al.  The acetogenic bacteria. , 1992 .

[121]  Derek R Lovley,et al.  Graphite electrodes as electron donors for anaerobic respiration. , 2004, Environmental microbiology.

[122]  E. Papoutsakis,et al.  Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. , 2012, Current opinion in biotechnology.

[123]  J. Zeikus,et al.  Electrically enhanced ethanol fermentation by Clostridium thermocellum and Saccharomyces cerevisiae , 2002, Applied Microbiology and Biotechnology.

[124]  Paul Richardson,et al.  The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). , 2008, Environmental microbiology.

[125]  D. R. Bond,et al.  Shewanella secretes flavins that mediate extracellular electron transfer , 2008, Proceedings of the National Academy of Sciences.

[126]  Meiying Xu,et al.  Bacterial extracellular electron transfer in bioelectrochemical systems , 2012 .

[127]  Hubertus V. M. Hamelers,et al.  Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. , 2010, Environmental science & technology.

[128]  E. Vijgenboom,et al.  In vivo studies disprove an obligatory role of azurin in denitrification in Pseudomonas aeruginosa and show that azu expression is under control of rpoS and ANR. , 1997, Microbiology.

[129]  George M. Hilliard,et al.  Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. , 2002, Advanced drug delivery reviews.

[130]  Hanxi Yang,et al.  Improved performances of E. coli-catalyzed microbial fuel cells with composite graphite/PTFE anodes , 2007 .

[131]  U. Deppenmeier,et al.  Involvement of Ech hydrogenase in energy conservation of Methanosarcina mazei , 2010, The FEBS journal.

[132]  A. Spormann,et al.  Extracellular Enzymes Facilitate Electron Uptake in Biocorrosion and Bioelectrosynthesis , 2015, mBio.

[133]  Bin Cao,et al.  Enhancing Bidirectional Electron Transfer of Shewanella oneidensis by a Synthetic Flavin Pathway. , 2015, ACS synthetic biology.

[134]  S. Elliott,et al.  Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window , 2008, JBIC Journal of Biological Inorganic Chemistry.

[135]  Prathap Parameswaran,et al.  Kinetic, electrochemical, and microscopic characterization of the thermophilic, anode-respiring bacterium Thermincola ferriacetica. , 2013, Environmental science & technology.

[136]  C. Leang,et al.  Two Putative c-Type Multiheme Cytochromes Required for the Expression of OmcB, an Outer Membrane Protein Essential for Optimal Fe(III) Reduction in Geobacter sulfurreducens , 2006, Journal of bacteriology.

[137]  M. Bruix,et al.  Thermodynamic characterization of a triheme cytochrome family from Geobacter sulfurreducens reveals mechanistic and functional diversity. , 2010, Biophysical journal.

[138]  B. Thamdrup Bacterial Manganese and Iron Reduction in Aquatic Sediments , 2000 .

[139]  Anthony Guiseppi-Elie,et al.  On the electrical conductivity of microbial nanowires and biofilms , 2011 .

[140]  D. Richardson,et al.  Exploring the biochemistry at the extracellular redox frontier of bacterial mineral Fe(III) respiration. , 2012, Biochemical Society transactions.

[141]  L. Ljungdahl,et al.  Electron-Transport System in Acetogens , 2003 .

[142]  M. Hecker,et al.  An Ancient Pathway Combining Carbon Dioxide Fixation with the Generation and Utilization of a Sodium Ion Gradient for ATP Synthesis , 2012, PloS one.

[143]  E. Papoutsakis,et al.  Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals , 2012 .

[144]  Kelly P. Nevin,et al.  Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. , 2013, Current opinion in biotechnology.

[145]  Sang-Eun Oh,et al.  Hydrogen and methane production from swine wastewater using microbial electrolysis cells. , 2009, Water research.

[146]  W. Ingledew The electron transport chain of Escherichia coli grown anaerobically with fumarate as terminal electron acceptor: an electron paramagnetic resonance study. , 1983, Journal of general microbiology.

[147]  Abraham Esteve-Núñez,et al.  Electrochemical insight into the mechanism of electron transport in biofilms of Geobacter sulfurreducens , 2011 .

[148]  C. Myers,et al.  Identification of the gene encoding the sole physiological fumarate reductase in Shewanella oneidensis MR‐1 , 2003, Journal of basic microbiology.

[149]  S. Ragsdale,et al.  Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. , 2008, Biochimica et biophysica acta.

[150]  Derek R Lovley,et al.  Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. , 2011, Bioelectrochemistry.

[151]  W. Verstraete,et al.  Microbial phenazine production enhances electron transfer in biofuel cells. , 2005, Environmental science & technology.

[152]  Kelly P. Nevin,et al.  Electrosynthesis of Organic Compounds from Carbon Dioxide Is Catalyzed by a Diversity of Acetogenic Microorganisms , 2011, Applied and Environmental Microbiology.