Firefly Algorithm Applied to Noncollinear Magnetic Phase Materials Prediction.

In most noncollinear crystal magnets, the number of metastable states is quite large and any calculation that tries to predict the ground state can fall into one of the possible metastable phases. In this work, we generalize the population based meta-heuristic firefly algorithm to the problem of the noncollinear magnetic phase ground state prediction within density functional theory (DFT). We extend the different steps in the firefly algorithm to this specific problem by using polarized constrained DFT calculations, whereby using Lagrange multipliers the directions of the atom magnetic moments remain fixed. By locking the directions of the magnetic moments at each search iteration, the method allows one to explore the entire Born-Oppenheimer energy surface of existing and physically plausible noncollinear configurations present in a crystal. We demonstrate that the number of minima can be large, which restrains the use of exhaustive searches.

[1]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[2]  A. Romero,et al.  Noncollinear magnetism in post‐perovskites from first principles: Comparison between CaRhO3 and NaNiF3 , 2015 .

[3]  D. Truhlar,et al.  Noncollinear Spins Provide a Self-Consistent Treatment of the Low-Spin State of a Biomimetic Oxomanganese Synthetic Trimer Inspired by the Oxygen Evolving Complex of Photosystem II , 2011 .

[4]  Nikolaus Hansen,et al.  USPEX - Evolutionary crystal structure prediction , 2006, Comput. Phys. Commun..

[5]  Luca Maria Gambardella,et al.  A survey on metaheuristics for stochastic combinatorial optimization , 2009, Natural Computing.

[6]  Elbio Dagotto,et al.  Complexity in Strongly Correlated Electronic Systems , 2005, Science.

[7]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[8]  G. Schulte,et al.  Assembly of high-valent oxomanganese clusters in aqueous solution. Redox equilibrium of water-stable Mn sub 3 O sub 4 sup 4+ and Mn sub 2 O sub 2 sup 3+ complexes , 1990 .

[9]  S. Goedecker,et al.  Metrics for measuring distances in configuration spaces. , 2013, The Journal of chemical physics.

[10]  S. Woodley,et al.  Crystal structure prediction from first principles. , 2008, Nature materials.

[11]  Artem R. Oganov Modern Methods of Crystal Structure Prediction: OGANOV:CRYSTAL - METHODS O-BK , 2010 .

[12]  Jürgen Kübler,et al.  Density functional theory of non-collinear magnetism , 1988 .

[13]  A. H. Cooke,et al.  The magnetic properties of NiF2 , 1965 .

[14]  R. Hennig,et al.  Random Search Methods , 2010 .

[15]  Fang Liu,et al.  Recent developments in the ABINIT software package , 2016, Comput. Phys. Commun..

[16]  Guillermo Avendaño-Franco,et al.  Firefly Algorithm for Structural Search. , 2016, Journal of chemical theory and computation.

[17]  David J. Singh,et al.  Electronic structure and magnetism of complex materials , 2003 .

[18]  Stefan Goedecker,et al.  Crystal structure prediction using the minima hopping method. , 2010, The Journal of chemical physics.

[19]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.