Visual tracking in high-dimensional particle filter

In this paper, we propose a novel object tracking algorithm by using high-dimensional particle filter and combined features. Firstly, the refined two-dimensional principal component analysis and the tendency are combined to represent an object. Secondly, we present a framework using high-order Monte Carlo Markov Chain which considers more information and performs more discriminative and efficient on moving objects than the traditional first-order particle filtering. Finally, an advanced sequential importance resampling is applied to estimate the posterior density and obtains the high-quality particles. To further gain the better samples, K-means clustering is used to select more typical particles, which reduces the computational cost. Both qualitative and quantitative evaluations on challenging image sequences demonstrate that the performance of our proposed algorithm is superior to the state-of-the-art methods.

[1]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Laura Sevilla-Lara,et al.  Distribution fields for tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Hua Hong-tu,et al.  Robust visual tracking based on product sparse coding , 2015 .

[5]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  Peihua Li,et al.  Visual contour tracking based on particle filters , 2003, Image Vis. Comput..

[7]  Weifeng Tian,et al.  Joint tracking algorithm using particle filter and mean shift with target model updating , 2006 .

[8]  Wen-Yan Chang,et al.  Visual Tracking in High-Dimensional State Space by Appearance-Guided Particle Filtering , 2008, IEEE Transactions on Image Processing.

[9]  Haijun Wang,et al.  Object Tracking via 2DPCA and ℓ2-Regularization , 2016, J. Electr. Comput. Eng..

[10]  Dan Schonfeld,et al.  Visual Tracking Using High-Order Particle Filtering , 2011, IEEE Signal Processing Letters.

[11]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, CVPR.

[12]  Lei Wang,et al.  Generalized 2D principal component analysis for face image representation and recognition , 2005, Neural Networks.

[13]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Pengfei Shi,et al.  Object Tracking using Incremental 2D-PCA Learning and ML Estimation , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[15]  G.Mallikarjuna Rao,et al.  Visual Object Target Tracking Using Particle Filter: A Survey , 2013 .

[16]  Huchuan Lu,et al.  Object Tracking via 2DPCA and $\ell_{1}$-Regularization , 2012, IEEE Signal Processing Letters.

[17]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[19]  P. Fearnhead,et al.  Improved particle filter for nonlinear problems , 1999 .

[20]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Tieniu Tan,et al.  Real-time hand tracking using a mean shift embedded particle filter , 2007, Pattern Recognit..

[22]  Lei Wang,et al.  Generalized 2 D Principal Component Analysis , 2005 .

[23]  Chirala Satyanarayana,et al.  Visual Object Target Tracking Using Particle Filter : A Survey , 2013 .

[24]  Frank Dellaert,et al.  A Rao-Blackwellized particle filter for EigenTracking , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[25]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[26]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[28]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Shan Gao,et al.  Robust and fast visual tracking via spatial kernel phase correlation filter , 2016, Neurocomputing.

[30]  张波,et al.  Joint tracking algorithm using particle filter and mean shift with target model updating , 2006 .

[31]  Shan Gao,et al.  Robust visual tracking based on product sparse coding , 2015, Pattern Recognit. Lett..

[32]  Dit-Yan Yeung,et al.  Learning a Deep Compact Image Representation for Visual Tracking , 2013, NIPS.

[33]  Bohyung Han,et al.  On-line density-based appearance modeling for object tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.