Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems

Hollow micro-/nano-structured materials are now playing an important role in cutting edge innovations for energy conversion and storage technologies such as solar cells, fuel cells, lithium ion batteries and super capacitors. These materials show great promise in addressing growing environmental concerns for cleaner power sources at a time of increasing global demand for energy. In this perspective, we show that complex multi-shelled micro-/nano-materials show significant material advantages in many applications over conventional simple hollow structures. We also summarize the vast array of synthetic strategies used to create multi-shelled hollow structures, and discuss the possible application of these novel materials for power generation and storage. Finally, the emergent challenges and future developments of multi-shelled hollow structures are further discussed.

[1]  Kangnian Fan,et al.  Fabrication of mesoporous core-shell structured titania microspheres with hollow interiors. , 2003, Chemical communications.

[2]  Yadong Yin,et al.  Self-templated synthesis of hollow nanostructures , 2009 .

[3]  Feng Jiao,et al.  Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. , 2005, Angewandte Chemie.

[4]  Jeffrey W. Fergus,et al.  Recent developments in cathode materials for lithium ion batteries , 2010 .

[5]  Zengling Wang,et al.  Synthesis and capacitive property of hierarchical hollow manganese oxide nanospheres with large specific surface area , 2009 .

[6]  Juan Carlos Ruiz-Morales,et al.  Engineering of materials for solid oxide fuel cells and other energy and environmental applications , 2010 .

[7]  H. Zeng Ostwald Ripening: A Synthetic Approach for Hollow Nanomaterials , 2007 .

[8]  B. Fang,et al.  Hierarchical nanostructured spherical carbon with hollow core/mesoporous shell as a highly efficient counter electrode in CdSe quantum-dot-sensitized solar cells , 2010 .

[9]  Guozhong Cao,et al.  Hierarchically structured photoelectrodes for dye-sensitized solar cells , 2011 .

[10]  Derek Allen Energy materials -meeting the challenge , 2008 .

[11]  Jiujun Zhang,et al.  Facile Synthesis of Co−Pt Hollow Sphere Electrocatalyst , 2007 .

[12]  Hui Xia,et al.  Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. , 2009, Journal of the American Chemical Society.

[13]  Hao Wang,et al.  Multi-shelled titania hollow spheres fabricated by a hard template strategy: enhanced photocatalytic activity. , 2010, Chemical communications.

[14]  T. Pinnavaia,et al.  Ultrastable mesostructured silica vesicles , 1998, Science.

[15]  D. Gerthsen,et al.  Nanoscale gold hollow spheres through a microemulsion approach. , 2007, Small.

[16]  B. G. Potter,et al.  Optically defined multifunctional patterning of photosensitive thin-film silica mesophases. , 2000, Science.

[17]  Y. L. Cao,et al.  Multilayered Nanocrystalline SnO2 Hollow Microspheres Synthesized by Chemically Induced Self-Assembly in the Hydrothermal Environment , 2007 .

[18]  Ram Devanathan,et al.  Recent developments in proton exchange membranes for fuel cells , 2008 .

[19]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[20]  Yong Hu,et al.  Polymer-monomer pairs as a reaction system for the synthesis of magnetic Fe3O4-polymer hybrid hollow nanospheres. , 2004, Angewandte Chemie.

[21]  Guozhong Cao,et al.  Nanostructured photoelectrodes for dye-sensitized solar cells , 2011 .

[22]  Jianfeng Chen,et al.  Hierarchical Assembly of Multilayered Hollow Microspheres from an Amphiphilic Pharmaceutical Molecule of Azithromycin , 2008 .

[23]  Wenzhong Wang,et al.  Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. , 2007, Angewandte Chemie.

[24]  M. Antonietti,et al.  A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach , 2006 .

[25]  J. Lee,et al.  Hollow carbon spheres with a controllable shell structure , 2006 .

[26]  K. Awaga,et al.  Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[27]  B. Tu,et al.  Ordered, Nanostructured Tin‐Based Oxides/Carbon Composite as the Negative‐Electrode Material for Lithium‐Ion Batteries , 2004 .

[28]  P. Kamat Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion , 2007 .

[29]  G. Joos,et al.  Supercapacitor Energy Storage for Wind Energy Applications , 2007, IEEE Transactions on Industry Applications.

[30]  Yadong Li,et al.  Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. , 2006, Chemistry.

[31]  Daoben Zhu,et al.  Controlled self-assembly behavior of an amphiphilic bisporphyrin-bipyridinium-palladium complex: from multibilayer vesicles to hollow capsules. , 2006, Angewandte Chemie.

[32]  H. Lee,et al.  Hollow TiO2 Hemispheres Obtained by Colloidal Templating for Application in Dye‐Sensitized Solar Cells , 2008 .

[33]  C. M. Li,et al.  Improved performance of Pd electrocatalyst supported on ultrahigh surface area hollow carbon spheres for direct alcohol fuel cells , 2008 .

[34]  Z. Wen,et al.  Hollow carbon spheres with wide size distribution as anode catalyst support for direct methanol fuel cells , 2007 .

[35]  Nam-Gyu Park,et al.  Nano‐embossed Hollow Spherical TiO2 as Bifunctional Material for High‐Efficiency Dye‐Sensitized Solar Cells , 2008 .

[36]  H. Zeng,et al.  Hollowing Sn-doped TiO2 nanospheres via ostwald ripening. , 2007, Journal of the American Chemical Society.

[37]  Younan Xia,et al.  Preparation of Mesoscale Hollow Spheres of TiO2 and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads , 2000 .

[38]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[39]  K. Tsutsumi,et al.  A Novel Pathway for Synthesis of Submicrometer‐Size Solid Core/Mesoporous Shell Silica Spheres , 1998 .

[40]  D. Kuang,et al.  Sonochemical preparation of hierarchical ZnO hollow spheres for efficient dye-sensitized solar cells. , 2010, Chemistry.

[41]  G. Campet,et al.  Hydrothermal Synthesis and Pseudocapacitance Properties of α-MnO2 Hollow Spheres and Hollow Urchins , 2007 .

[42]  Alex B. F. Martinson,et al.  Advancing beyond current generation dye-sensitized solar cells , 2008 .

[43]  M. Izaki,et al.  Preparation of Hollow Titanium Dioxide Shell Thin Films by Electrophoresis and Electrolysis for Dye-Sensitized Solar Cells , 2009 .

[44]  G. Lu,et al.  Shell-in-shell TiO2 hollow spheres synthesized by one-pot hydrothermal method for dye-sensitized solar cell application , 2011 .

[45]  X. Zhao,et al.  Growth of Polyaniline on Hollow Carbon Spheres for Enhancing Electrocapacitance , 2010 .

[46]  Guozhong Cao,et al.  Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. , 2008, Angewandte Chemie.

[47]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[48]  Qing Yang,et al.  Facile One-Step Synthesis of Double-Shelled CeO2 Hollow Spheres and Their Optical and Catalytic Properties , 2010 .

[49]  B. Fang,et al.  Hierarchical nanostructured hollow spherical carbon with mesoporous shell as a unique cathode catalyst support in proton exchange membrane fuel cell. , 2009, Physical chemistry chemical physics : PCCP.

[50]  Galo J. A. A. Soler-Illia,et al.  Coupling Nanobuilding Block and Breath Figures Approaches for the Designed Construction of Hierarchically Templated Porous Materials and Membranes , 2008 .

[51]  Masaru Saito,et al.  Large photocurrent generation in dye-sensitized ZnO solar cells , 2008 .

[52]  X. Lai,et al.  One-pot synthesis of porous hematite hollow microspheres and their application in water treatment. , 2010, Journal of nanoscience and nanotechnology.

[53]  X. Bao,et al.  In situ introduction of dispersed metallic Ag nanoparticles into the channels of mesoporous carbon CMK-3 , 2007 .

[54]  S. Fu,et al.  Self-Assembled 3D Flower-Like Hierarchical β-Ni(OH)2Hollow Architectures and their In Situ Thermal Conversion to NiO , 2009, Nanoscale research letters.

[55]  Lynden A. Archer,et al.  Designed Synthesis of Coaxial SnO2@carbon Hollow Nanospheres for Highly Reversible Lithium Storage , 2009 .

[56]  J. Xie,et al.  Double-shelled hollow microspheres of LiMn2O4 for high-performance lithium ion batteries , 2011 .

[57]  B. Liu,et al.  Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors. , 2005, Small.

[58]  Ying Wang,et al.  Developments in Nanostructured Cathode Materials for High‐Performance Lithium‐Ion Batteries , 2008 .

[59]  Jin Zhai,et al.  Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. , 2010, ACS nano.

[60]  M. Zheng,et al.  Facile Fabrication of Nickel Oxide Hollow Spheres and Amorphous Carbon/Nickel Nanoparticles Composites Using Colloidal Carbonaceous Microspheres as Template , 2005 .

[61]  X. Xing,et al.  Fe2TiO5/α-Fe2O3 nanocomposite hollow spheres with enhanced gas-sensing properties , 2010 .

[62]  Guozhong Cao,et al.  Polydisperse Aggregates of ZnO Nanocrystallites: A Method for Energy‐Conversion‐Efficiency Enhancement in Dye‐Sensitized Solar Cells , 2008 .

[63]  Wenzhong Wang,et al.  Surfactant-assisted synthesis of double-wall Cu2O hollow spheres , 2011 .

[64]  G. Lu,et al.  A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres , 2010 .

[65]  R. Friend,et al.  Dye-sensitized solar cell based on a three-dimensional photonic crystal. , 2010, Nano letters.

[66]  X. Xia,et al.  One-step pyrolysis process to synthesize dispersed Pt/carbon hollow nanospheres catalysts for electrocatalysis , 2007 .

[67]  Zhenzhong Yang,et al.  General synthetic route toward functional hollow spheres with double-shelled structures. , 2005, Angewandte Chemie.

[68]  Jinlong Yang,et al.  Shape evolution of new-phased lepidocrocite VOOH from single-shelled to double-shelled hollow nanospheres on the basis of programmed reaction-temperature strategy. , 2009, Inorganic chemistry.

[69]  Lei Jiang,et al.  Hollow Micro/Nanomaterials with Multilevel Interior Structures , 2009 .

[70]  L. Archer,et al.  Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: cavity size tuning and functionalization. , 2007, Small.

[71]  Bruno Jousselme,et al.  Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes , 2011 .

[72]  Yunfeng Lu,et al.  Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. , 2007, Journal of the American Chemical Society.

[73]  Huaihe Song,et al.  Hollow graphene oxide spheres self-assembled by W/O emulsion , 2010 .

[74]  Shudong Zhang,et al.  Self-assembled double-shelled ferrihydrite hollow spheres with a tunable aperture. , 2008, Chemistry.

[75]  Chengzhong Yu,et al.  Organosilica Multilamellar Vesicles with Tunable Number of Layers and Sponge-Like Walls via One Surfactant Templating , 2008 .

[76]  T. Kitamura,et al.  Quasi-Solid-State Dye-Sensitized TiO2 Solar Cells: Effective Charge Transport in Mesoporous Space Filled with Gel Electrolytes Containing Iodide and Iodine , 2001 .

[77]  M. Oh,et al.  Multi Ball‐In‐Ball Hybrid Metal Oxides , 2011, Advanced materials.

[78]  An Effective Route for Porous Ferrihydrite Preparation from Layered Double Hydroxide Precursors , 2006 .

[79]  Liquan Chen,et al.  A spontaneous combustion reaction for synthesizing Pt hollow capsules using colloidal carbon spheres as templates. , 2006, Chemistry.

[80]  Andreas Poullikkas,et al.  Overview of current and future energy storage technologies for electric power applications , 2009 .

[81]  X. Lai,et al.  Formation of efficient dye-sensitized solar cells by introducing an interfacial layer of hierarchically ordered macro-mesoporous TiO2 film , 2011 .

[82]  J. Fendler,et al.  Polymerized Surfactant Vesicles: Novel Membrane Mimetic Systems , 1984, Science.

[83]  Xiaoming Sun,et al.  Highly sensitive WO3 hollow-sphere gas sensors. , 2004, Inorganic chemistry.

[84]  D. Zhao,et al.  An Aqueous Emulsion Route to Synthesize Mesoporous Carbon Vesicles and Their Nanocomposites , 2010, Advanced materials.

[85]  Feifei Gao,et al.  An organic sensitizer with a fused dithienothiophene unit for efficient and stable dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[86]  Yi Xie,et al.  Facile Synthesis of SnO2 Hollow Nanospheres and Applications in Gas Sensors and Electrocatalysts , 2006 .

[87]  J. C. Yu,et al.  Self‐Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres , 2005 .

[88]  Yadong Li,et al.  Ga2O3 and GaN semiconductor hollow spheres. , 2004, Angewandte Chemie.

[89]  T. Mallouk,et al.  Coupling of titania inverse opals to nanocrystalline titania layers in dye-sensitized solar cells. , 2008, The journal of physical chemistry. B.

[90]  L. Archer,et al.  Hollow Micro‐/Nanostructures: Synthesis and Applications , 2008 .

[91]  Yan Lu,et al.  Shaping colloidal rutile into thermally stable and porous mesoscopic titania balls. , 2009, Small.

[92]  William W. Yu,et al.  Facile synthesis of tin oxide nanoflowers: a potential high-capacity lithium-ion-storage material. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[93]  Taeghwan Hyeon,et al.  Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures , 2002 .

[94]  Jun‐Jie Zhu,et al.  Spherical hollow assembly composed of Cu2O nanoparticles , 2003 .

[95]  Yangxuan Xiao,et al.  TiO2‐Coated Multilayered SnO2 Hollow Microspheres for Dye‐Sensitized Solar Cells , 2009 .

[96]  S. Han,et al.  Simple Solid‐Phase Synthesis of Hollow Graphitic Nanoparticles and their Application to Direct Methanol Fuel Cell Electrodes , 2003 .

[97]  Jun Liu,et al.  Hollow Nanostructured Anode Materials for Li-Ion Batteries , 2010, Nanoscale research letters.

[98]  Min Gyu Kim,et al.  Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries , 2009 .

[99]  C. Feldmann,et al.  Nanoscale γ-AlO(OH) Hollow Spheres: Synthesis and Container-Type Functionality , 2007 .

[100]  Guangzhao Zhang,et al.  In2O3 hollow microspheres: synthesis from designed In(OH)3 precursors and applications in gas sensors and photocatalysis. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[101]  John Man-shun Ma,et al.  Synthesis of Spheres with Complex Structures Using Hollow Latex Cages as Templates , 2005 .

[102]  Weidong Shi,et al.  Oriented contraction: a facile nonequilibrium heat-treatment approach for fabrication of maghemite fiber-in-tube and tube-in-tube nanostructures. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[103]  Yong Wang,et al.  Template‐Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity , 2006 .

[104]  X. Lai,et al.  General Synthesis of Homogeneous Hollow Core-Shell Ferrite Microspheres , 2009 .

[105]  Jin-Song Hu,et al.  Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts. , 2004, Angewandte Chemie.

[106]  Jin Luo,et al.  Fuel cell technology: nano-engineered multimetallic catalysts , 2008 .

[107]  Li-Jun Wan,et al.  Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. , 2005, Angewandte Chemie.

[108]  H. Zeng Synthesis and self-assembly of complex hollow materials , 2011 .

[109]  Jiaguo Yu,et al.  Dye-sensitized solar cells based on hollow anatase TiO2 spheres prepared by self-transformation method , 2010 .

[110]  Zhiyu Wang,et al.  Engineering nonspherical hollow structures with complex interiors by template-engaged redox etching. , 2010, Journal of the American Chemical Society.

[111]  Guozhong Cao,et al.  ZnO Nanostructures for Dye‐Sensitized Solar Cells , 2009 .

[112]  Janos H. Fendler,et al.  Surfactant vesicles as membrane mimetic agents: characterization and utilization , 1980 .

[113]  Huai-Ping Cong,et al.  Hybrid ZnO–Dye Hollow Spheres with New Optical Properties by a Self‐Assembly Process Based on Evans Blue Dye and Cetyltrimethylammonium Bromide , 2007 .

[114]  Khai Leok Chan,et al.  Probing the kinetics of short-distance drug release from nanocarriers to nanoacceptors. , 2010, Angewandte Chemie.

[115]  D. Su,et al.  Nanoarchitecturing of Activated Carbon: Facile Strategy for Chemical Functionalization of the Surface of Activated Carbon , 2008 .

[116]  Yitai Qian,et al.  Double‐Shelled Mn2O3 Hollow Spheres and Their Application in Water Treatment , 2010 .

[117]  X. Xue,et al.  Controllable synthesis of pd nanocatalysts for direct formic acid fuel cell (DFAFC) application: From pd hollow nanospheres to pd nanoparticles , 2007 .

[118]  Yu‐Guo Guo,et al.  Synthesis and Lithium Storage Properties of Co3O4 Nanosheet‐Assembled Multishelled Hollow Spheres , 2010 .

[119]  Weiguo Song,et al.  Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes , 2011 .

[120]  Caruso,et al.  Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating , 1998, Science.

[121]  Dan Wang,et al.  General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. , 2011, Angewandte Chemie.