Reafferent or Redundant: Integration of Phonotaxis and Optomotor Behavior in Crickets and Robots

A general problem in understanding the mechanisms underlying animal behavior is the integration or interaction of different sensorimotor systems. Webb and Harrison (2000a, b) investigated the addition of an optomotor reflex to a sound-localizing robot modeled on cricket behavior. Böhm, Schildberger, and Huber (1991) proposed a simple additive mechanism to explain how the cricket combines the two behaviors. Problems implementing this on the robot led us to propose an alternative inhibition mechanism, which proved effective. Here we directly compare these two possibilities and several further alternatives. First, in a simulation of the open-loop paradigm used by Böhm et al. we demonstrate that there are at least five algorithms (including “efferent copy”) that may adequately account for the data they present. We then consider possible neural implementations of several of these schemes, and test them in robot experiments. The results suggest that inhibition is both neurally plausible and effective as a means of combining these behaviors in real sensorimotor situations.

[1]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[2]  Gary D. Bernard,et al.  The pursuit response of the housefly and its interaction with the optomotor response , 2004, Journal of comparative physiology.

[3]  R. Cardé,et al.  Pheromone-modulated optomotor response in male gypsy moths, Lymantria dispar L.: Upwind flight in a pheromone plume in different wind velocities , 1990, Journal of Comparative Physiology A.

[4]  K. Schildberger,et al.  Temporal selectivity of identified auditory neurons in the cricket brain , 2004, Journal of Comparative Physiology A.

[5]  Barbara Webb,et al.  A Robot Attracted to the Cricket Species Gryllus bimaculatus , 1997 .

[6]  F. Huber,et al.  Sound localisation in crickets , 1994, Journal of Comparative Physiology A.

[7]  Martin Egelhaaf,et al.  Dynamic properties of two control systems underlying visually guided turning in house-flies , 1987, Journal of Comparative Physiology A.

[8]  C. H. F. Rowell,et al.  Locust flight steering , 1992, Journal of Comparative Physiology A.

[9]  E. Holst,et al.  Das Reafferenzprinzip , 2004, Naturwissenschaften.

[10]  Christof Koch,et al.  An Analog VLSI Model of the Fly Elementary Motion Detector , 1997, NIPS.

[11]  Barbara Webb,et al.  Physical and Temporal Scaling Considerations in a Robot Model of Cricket Calling Song Preference , 1997, Artificial Life.

[12]  Barbara Webb,et al.  A simple latency-dependent spiking-neuron model of cricket phonotaxis , 2000, Biological Cybernetics.

[13]  T. S. Collett,et al.  Angular tracking and the optomotor response an analysis of visual reflex interaction in a hoverfly , 1980, Journal of comparative physiology.

[14]  Christof Koch,et al.  Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .

[15]  Richard E Reeve,et al.  New neural circuits for robot phonotaxis , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  C. H. F. Rowell,et al.  Locust flight steering , 1992, Journal of Comparative Physiology A.

[17]  B. Webb What does robotics offer animal behaviour? , 2000, Animal Behaviour.

[18]  Guy Lories Intelligent behaviour in animals and robots - McFarland,D, Bosser,T , 1996 .

[19]  A. V. Popov,et al.  Physics of directional hearing in the cricket Gryllus bimaculatus , 1994, Journal of Comparative Physiology A.

[20]  R. Wolf,et al.  Reafferent control of optomotor yaw torque inDrosophila melanogaster , 1988, Journal of Comparative Physiology A.

[21]  H. Wagner Flight Performance and Visual Control of Flight of the Free-Flying Housefly (Musca Domestica L.) III. Interactions Between Angular Movement Induced by Wide- and Smallfield Stimuli , 1986 .

[22]  Franz Huber,et al.  Visual and Acoustic Course Control in the Cricket Gryllus Bimaculatus , 1991 .

[23]  Barbara Webb,et al.  Eyes and ears: combining sensory motor systems modelled on insect physiology , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[24]  Reid R. Harrison,et al.  Integrating sensorimotor systems in a robot model of cricket behavior , 2000, SPIE Optics East.

[25]  Kuno Kirschfeld,et al.  Tracking of small objects in front of a textured background by insects and vertebrates: phenomena and neuronal basis , 1994, Biological Cybernetics.

[26]  Karl Georg Götz,et al.  The optomotor equilibrium of theDrosophila navigation system , 1975, Journal of comparative physiology.

[27]  Ronald C. Arkin,et al.  Motor Schema — Based Mobile Robot Navigation , 1989, Int. J. Robotics Res..

[28]  Christof Koch,et al.  A Robust Analog VLSI Motion Sensor Based on the Visual System of the Fly , 1999, Auton. Robots.

[29]  J. Schul,et al.  Song recognition by temporal cues in a group of closely related bushcricket species (genus Tettigonia) , 1998, Journal of Comparative Physiology A.