A fractional rate‐dependent cohesive‐zone model
暂无分享,去创建一个
[1] B. Persson,et al. Crack propagation in rubber-like materials , 2005 .
[2] E. Kramer,et al. Interface fracture and viscoelastic deformation in finite size specimens , 1992 .
[3] Whittle Gruffudd,et al. Relaxation spectrum recovery using Fourier transforms , 2012 .
[4] Cv Clemens Verhoosel,et al. A phase‐field model for cohesive fracture , 2013 .
[5] G. W. Blair. The role of psychophysics in rheology , 1947 .
[6] T. Siegmund,et al. Vocal fold tissue failure: preliminary data and constitutive modeling. , 2004, Journal of biomechanical engineering.
[7] Jay Fineberg,et al. Instability in dynamic fracture , 1999 .
[8] Karthik Ramani,et al. Rate-dependent crack growth in adhesives II. Experiments and analysis , 2003 .
[9] A. Beris,et al. On the admissibility criteria for linear viscoelasticity kernels , 1993 .
[10] Richard Schapery,et al. A theory of crack initiation and growth in viscoelastic media , 1975 .
[11] M. Gilchrist,et al. Bimodular rubber buckles early in bending , 2010, 1301.5437.
[12] N. Valoroso,et al. A cohesive zone model with rate-sensitivity for fast crack propagation , 2014 .
[13] A. Thomas,et al. The strength of highly elastic materials , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[14] William Alan Day,et al. The Thermodynamics of Simple Materials with Fading Memory , 1972 .
[15] K. B. Oldham,et al. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .
[16] Joseph Padovan,et al. Computational algorithms for FE formulations involving fractional operators , 1987 .
[17] R. Koeller. Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .
[18] M. Lambrecht,et al. Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals , 2002 .
[19] M. A. Crisfield,et al. Progressive Delamination Using Interface Elements , 1998 .
[20] David H. Allen,et al. A micromechanical model for a viscoelastic cohesive zone , 2001 .
[21] M. Crisfield,et al. Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues , 2001 .
[22] F. Feyel,et al. Interface debonding models: a viscous regularization with a limited rate dependency , 2001 .
[23] A. D. Drozdov,et al. Fractional differential models in finite viscoelasticity , 1997 .
[24] Marco Musto,et al. A novel rate-dependent cohesive-zone model combining damage and visco-elasticity , 2013 .
[25] Ludwig Boltzmann,et al. Zur Theorie der elastischen Nachwirkung , 1878 .
[26] R. Frassine,et al. Experimental analysis of viscoelastic criteria for crack initiation and growth in polymers , 1996 .
[27] Lothar Gaul,et al. Finite Element Formulation of Viscoelastic Constitutive Equations Using Fractional Time Derivatives , 2002 .
[28] A. Morro,et al. Mathematical problems in linear viscoelasticity , 1987 .
[29] E. Onat,et al. On uniqueness in linear viscoelasticity , 1962 .
[30] F. Akyildiz,et al. On the spring-dashpot representation of linear viscoelastic behaviour , 1990 .
[31] New class of creep-relaxation functions , 1995 .
[32] Karthik Ramani,et al. Rate-dependent crack growth in adhesives: I. Modeling approach , 2003 .
[33] Shlomo Breuer,et al. On the determination of free energy in linear viscoelastic solids , 1964 .
[34] A. Kinloch,et al. Fracture Behaviour of Polymers , 2013 .
[35] Daniele Dini,et al. Detailed finite element modelling of deep needle insertions into a soft tissue phantom using a cohesive approach , 2013, Computer methods in biomechanics and biomedical engineering.
[36] Mario Di Paola,et al. Free energy and states of fractional-order hereditariness , 2014 .
[37] Jean-François Molinari,et al. A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials , 2005 .
[38] Gérard A. Maugin,et al. The thermomechanics of nonlinear irreversible behaviors : an introduction , 1999 .
[39] M. T. Cicero. FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .
[40] Alberto Corigliano,et al. Parameter identification of a time-dependent elastic-damage interface model for the simulation of debonding in composites ☆ , 2001 .
[41] S. Govindjee,et al. Numerical study of geometric constraint and cohesive parameters in steady-state viscoelastic crack growth , 2006 .
[42] Mgd Marc Geers,et al. Identification and characterization of delamination in polymer coated metal sheet , 2008 .
[43] I. Podlubny,et al. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives , 2005, math-ph/0512028.
[44] Elena Benvenuti,et al. A regularized XFEM framework for embedded cohesive interfaces , 2008 .
[45] I. Podlubny. Fractional differential equations , 1998 .
[46] K. Liechti,et al. Mixed-mode, time-dependent rubber/metal debonding , 2001 .
[47] Helmut Schiessel,et al. Hierarchical analogues to fractional relaxation equations , 1993 .
[48] M. Marder,et al. Energy Balance in Dynamic Fracture, Investigated by a Potential Drop Technique , 1998 .
[49] Alexander Lion,et al. On the thermodynamics of fractional damping elements , 1997 .
[50] G. I. Barenblatt. THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .
[51] B. Persson,et al. Crack propagation in viscoelastic solids. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[52] C. Zener. Elasticity and anelasticity of metals , 1948 .
[53] Alberto Corigliano,et al. Rate-dependent interface models: formulation and numerical applications , 2001 .
[54] W. S. Teo,et al. Modelling the fracture behaviour of adhesively-bonded joints as a function of test rate , 2011 .
[55] R. Taylor,et al. Thermomechanical analysis of viscoelastic solids , 1970 .
[56] Marc G. D. Geers,et al. Multi-scale modelling of delamination through fibrillation , 2014 .
[57] Michael Ortiz,et al. Nonconvex energy minimization and dislocation structures in ductile single crystals , 1999 .
[58] M. Riesz. L'intégrale de Riemann-Liouville et le problème de Cauchy , 1949 .
[59] P. Gennes,et al. Soft Interfaces: The 1994 Dirac Memorial Lecture , 1996 .
[60] G. Alfano. On the influence of the shape of the interface law on the application of cohesive-zone models , 2006 .
[61] P. G. Nutting,et al. A new general law of deformation , 1921 .
[62] G. McKinley,et al. Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[63] S. Eckardt,et al. Modelling of cohesive crack growth in concrete structures with the extended finite element method , 2007 .
[64] Giuseppe Giambanco,et al. Mixed mode failure analysis of bonded joints with rate‐dependent interface models , 2006 .
[65] Ismael Herrera,et al. On dissipation inequalities and linear viscoelasticity , 1965 .
[66] K. Adolfsson. Nonlinear Fractional Order Viscoelasticity at Large Strains , 2004 .
[67] Alberto Corigliano,et al. Formulation, identification and use of interface models in the numerical analysis of composite delamination , 1993 .
[68] M. Geers,et al. On the development of a 3D cohesive zone element in the presence of large deformations , 2008 .
[69] Ingo Müller,et al. The Thermodynamics of Simple Materials with Fading Memory , 1972 .
[70] Chad M. Landis,et al. Crack velocity dependent toughness in rate dependent materials , 2000 .