Dynamical one-dimensional models of passive piezoelectric sensors

This study concerns the mathematical modeling of anisotropic and transversely inhomogeneous slender piezoelectric bars. Such rod-like structures are employed as passive sensors aimed at measuring the displacement field on the boundary of an underlying elastic medium excited by an external source. Based on the coupled three-dimensional dynamical equations of piezoelectricity in the quasi-electrostatic approximation, a set of limit problems is derived using formal asymptotic expansions of the electric potential and elastic displacement fields. The nature of these problems depends strongly on the choice of boundary conditions, therefore, an appropriate set of constrains is introduced in order to derive one-dimensional models that are relevant to the measurement of a displacement field imposed at one end of the bar. The structure of the first-order electric and displacement fields as well as the associated coupled limit equations are determined. Moreover, the properties of the homogenized material parameters entering these equations are investigated in various configurations. The obtained one-dimensional models of piezoelectric sensors are analyzed, and it is finally shown how they enable the identification of the boundary displacement associated with the probed elastic medium.

[1]  K. O. Friedrichs,et al.  A boundary-layer theory for elastic plates , 1961 .

[2]  Gérard A. Maugin,et al.  AN ASYMPTOTIC THEORY OF THIN PIEZOELECTRIC PLATES , 1990 .

[3]  T. Ikeda Fundamentals of piezoelectricity , 1990 .

[4]  J. M. Viaño,et al.  Asymptotic justification of an evolution linear thermoelastic model for rods , 1994 .

[5]  J. M. Viaño,et al.  Mathematical modelling of rods , 1996 .

[6]  Philippe G. Ciarlet,et al.  Mathematical elasticity. volume II, Theory of plates , 1997 .

[7]  Guy Chavent,et al.  Waveform Inversion of Reflection Seismic Data for Kinematic Parameters by Local Optimization , 1998, SIAM J. Sci. Comput..

[8]  D. Osmont,et al.  New Thin Piezoelectric Plate Models , 1998 .

[9]  Theodoros D. Tsiboukis,et al.  Inverse scattering using the finite-element method and a nonlinear optimization technique , 1999 .

[10]  S. Nazarov Justification of the asymptotic theory of thin rods. Integral and pointwise estimates , 1999 .

[11]  Grégoire Allaire,et al.  Boundary layer tails in periodic homogenization , 1999 .

[12]  Eugène Dieulesaint,et al.  Elastic Waves in Solids II , 2000 .

[13]  J. M. Viaño,et al.  Mathematical justification of stretching and torsional vibration models for elastic rods , 2000 .

[14]  D. Royer,et al.  Generation, acousto-optic interactions, applications , 2000 .

[15]  D. Royer,et al.  Free and guided propagation , 2000 .

[16]  A. Sène,et al.  Modelling of piezoelectric static thin plates , 2001 .

[17]  T. Arens,et al.  Linear sampling methods for 2D inverse elastic wave scattering , 2001 .

[18]  Bojan B. Guzina,et al.  Computational framework for the BIE solution to inverse scattering problems in elastodynamics , 2003 .

[19]  Bojan B. Guzina,et al.  A linear sampling method for near-field inverse problems in elastodynamics , 2004 .

[20]  Isabel N. Figueiredo,et al.  A piezoelectric anisotropic plate model , 2004 .

[21]  Vincent Gibiat,et al.  Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection , 2005 .

[22]  Patrick Joly,et al.  Asymptotic analysis of an approximate model for time harmonic waves in media with thin slots , 2006 .

[23]  Isabel N. Figueiredo,et al.  A Generalized Piezoelectric Bernoulli–Navier Anisotropic Rod Model , 2006 .

[24]  Marc Bonnet,et al.  Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain , 2006 .

[25]  Sung-Jin Song,et al.  Ultrasonic Nondestructive Evaluation Systems: Models and Measurements , 2007 .

[26]  Antonios Charalambopoulos,et al.  The factorization method in inverse elastic scattering from penetrable bodies , 2007 .

[27]  Christian Licht,et al.  Asymptotic modeling of linearly piezoelectric slender rods , 2008 .

[28]  Bojan B. Guzina,et al.  Elastic-wave identification of penetrable obstacles using shape-material sensitivity framework , 2009, J. Comput. Phys..

[29]  M. Bonnet,et al.  A FEM-based topological sensitivity approach for fast qualitative identification of buried cavities from elastodynamic overdetermined boundary data , 2010 .

[30]  P. Joly,et al.  Mathematical and numerical modelling of piezoelectric sensors , 2012 .

[31]  Sergio Callegari,et al.  Ultrasonic Nondestructive Evaluation Systems: Industrial Application Issues , 2014 .