Dynamical one-dimensional models of passive piezoelectric sensors
暂无分享,去创建一个
[1] K. O. Friedrichs,et al. A boundary-layer theory for elastic plates , 1961 .
[2] Gérard A. Maugin,et al. AN ASYMPTOTIC THEORY OF THIN PIEZOELECTRIC PLATES , 1990 .
[3] T. Ikeda. Fundamentals of piezoelectricity , 1990 .
[4] J. M. Viaño,et al. Asymptotic justification of an evolution linear thermoelastic model for rods , 1994 .
[5] J. M. Viaño,et al. Mathematical modelling of rods , 1996 .
[6] Philippe G. Ciarlet,et al. Mathematical elasticity. volume II, Theory of plates , 1997 .
[7] Guy Chavent,et al. Waveform Inversion of Reflection Seismic Data for Kinematic Parameters by Local Optimization , 1998, SIAM J. Sci. Comput..
[8] D. Osmont,et al. New Thin Piezoelectric Plate Models , 1998 .
[9] Theodoros D. Tsiboukis,et al. Inverse scattering using the finite-element method and a nonlinear optimization technique , 1999 .
[10] S. Nazarov. Justification of the asymptotic theory of thin rods. Integral and pointwise estimates , 1999 .
[11] Grégoire Allaire,et al. Boundary layer tails in periodic homogenization , 1999 .
[12] Eugène Dieulesaint,et al. Elastic Waves in Solids II , 2000 .
[13] J. M. Viaño,et al. Mathematical justification of stretching and torsional vibration models for elastic rods , 2000 .
[14] D. Royer,et al. Generation, acousto-optic interactions, applications , 2000 .
[15] D. Royer,et al. Free and guided propagation , 2000 .
[16] A. Sène,et al. Modelling of piezoelectric static thin plates , 2001 .
[17] T. Arens,et al. Linear sampling methods for 2D inverse elastic wave scattering , 2001 .
[18] Bojan B. Guzina,et al. Computational framework for the BIE solution to inverse scattering problems in elastodynamics , 2003 .
[19] Bojan B. Guzina,et al. A linear sampling method for near-field inverse problems in elastodynamics , 2004 .
[20] Isabel N. Figueiredo,et al. A piezoelectric anisotropic plate model , 2004 .
[21] Vincent Gibiat,et al. Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection , 2005 .
[22] Patrick Joly,et al. Asymptotic analysis of an approximate model for time harmonic waves in media with thin slots , 2006 .
[23] Isabel N. Figueiredo,et al. A Generalized Piezoelectric Bernoulli–Navier Anisotropic Rod Model , 2006 .
[24] Marc Bonnet,et al. Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain , 2006 .
[25] Sung-Jin Song,et al. Ultrasonic Nondestructive Evaluation Systems: Models and Measurements , 2007 .
[26] Antonios Charalambopoulos,et al. The factorization method in inverse elastic scattering from penetrable bodies , 2007 .
[27] Christian Licht,et al. Asymptotic modeling of linearly piezoelectric slender rods , 2008 .
[28] Bojan B. Guzina,et al. Elastic-wave identification of penetrable obstacles using shape-material sensitivity framework , 2009, J. Comput. Phys..
[29] M. Bonnet,et al. A FEM-based topological sensitivity approach for fast qualitative identification of buried cavities from elastodynamic overdetermined boundary data , 2010 .
[30] P. Joly,et al. Mathematical and numerical modelling of piezoelectric sensors , 2012 .
[31] Sergio Callegari,et al. Ultrasonic Nondestructive Evaluation Systems: Industrial Application Issues , 2014 .