Geological Carbon Sequestration in the Context of Two-Phase Flow in Porous Media: A Review

In this review, various aspects of geological carbon sequestration are discussed in relation to the principles of two-phase flow in porous media. Literature reports on geological sequestration of CO2 show that the aquifer storage capacity, sealing integrity of the caprock, and the in situ processes, for example, the displacement of brine by supercritical CO2 (scCO2), convection–diffusion–dissolution processes involving scCO2 and brine, geochemical reactions, and mineral precipitation depend on the fluid–fluid–rock characteristics as well as the prevailing subsurface conditions. Considering the complexity of the interrelationships among various processes, experimental investigations and network of mathematical functions are required for the ideal choice of geological site with predictable fluid–fluid–rock behaviors that enhance effective monitoring. From a thorough appraisal of the existing publications, recommendations are made for improvement in the existing simulators to fully couple the entire processes involved in the sequestration operations and in situ mechanisms which include injection rate and pressure, brine displacement, simultaneous flow of free and buoyant phases of CO2, various trapping mechanisms, convection–diffusion–dissolution processes, scCO2–brine–rock reactions, precipitation of the rock minerals, and the consequences on the hydraulic and hydrogeological properties in the course of time as well as the quantity of injected CO2. Suggestion is made for the inclusion of leakage parameters on site-specific basis to quantify the risks posed by the prevailing fluid–fluid–rock characteristics as well as their immediate and future tendencies. Calls are also made for thorough investigations of factors that cause nonuniqueness of the two-phase flow behavior with suggestions for the use of appropriate experimental techniques. The review comprehensively synthesizes the available knowledge in the geological carbon sequestration in a logical sequence.

[1]  Don W. Vasco,et al.  A full field simulation of the in Salah gas production and CO2 storage project using a coupled geo-mechanical and thermal fluid flow simulator , 2011 .

[2]  Diganta Bhusan Das,et al.  Dynamic effects in capillary pressure–saturations relationships for two-phase flow in 3D porous media: Implications of micro-heterogeneities , 2007 .

[3]  M. G.,et al.  VISCOUS FINGERING IN POROUS MEDIA , 2002 .

[4]  H. Ouakad,et al.  Modeling the Structural-Thermal-Electrical Coupling in an Electrostatically Actuated MEMS Switch and Its Impact on the Switch Stability , 2013 .

[5]  Toshifumi Matsuoka,et al.  Experimental study on CO2 monitoring and quantification of stored CO2 in saline formations using resistivity measurements , 2010 .

[6]  William G. Gray,et al.  Thermodynamic basis of capillary pressure in porous media , 1993 .

[7]  Lucian Wielopolski,et al.  Near-surface soil carbon detection for monitoring CO2 seepage from a geological reservoir , 2010 .

[8]  Delft,et al.  Capillary Pressure and Wettability Behavior of the Coal-Water-Carbon Dioxide System at High Pressures , 2006 .

[9]  D. Das,et al.  Dynamic Effects in Capillary Pressure Relationships for Two-Phase Flow in Porous Media: Experiments and Numerical Analyses , 2012 .

[10]  B. K. Coats,et al.  A Compositional Model for CO 2 Floods Including CO 2 Solubility in Water , 1996 .

[11]  A. Palmer,et al.  SUMMARY OF THE IPCC SPECIAL REPORT ON CARBON DIOXIDE CAPTURE AND STORAGE , 2006 .

[12]  S. Benson,et al.  Capillary pressure and heterogeneity for the CO2/water system in sandstone rocks at reservoir conditions , 2011 .

[13]  Diffusive and Convective Mechanisms during CO2 Sequestration in Aquifers , 2009 .

[14]  P. Raats,et al.  Dynamics of Fluids in Porous Media , 1973 .

[15]  H. Ott,et al.  Stability of CO2–brine immiscible displacement , 2012 .

[16]  B. K. Coats,et al.  A Compositional Model for CO2 Floods Including CO2 Solubility in Water , 1998 .

[18]  M. Simpson Global Climate Change Impacts in the United States , 2011 .

[19]  B. Gong,et al.  Discrete Modeling and Simulation on Potential Leakage through Fractures in CO2 Sequestration , 2010 .

[20]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[21]  Bamshad Nazarian,et al.  Reservoir Modeling of CO2 Plume Behavior Calibrated Against Monitoring Data From Sleipner, Norway , 2010 .

[22]  Pathegama Gamage Ranjith,et al.  A review of studies on CO2 sequestration and caprock integrity , 2010 .

[23]  M. Celia,et al.  Upscaling geochemical reaction rates using pore-scale network modeling , 2006 .

[24]  V. Masson‐Delmotte,et al.  Target atmospheric CO2: Where should humanity aim? , 2008, 0804.1126.

[25]  J. Prévost,et al.  Coupled multi-phase thermo-poromechanical effects. Case study: CO2 injection at In Salah, Algeria , 2011 .

[26]  D. Das,et al.  A numerical study of capillary pressure - saturation relationship for supercritical carbon dioxide (CO2) injection in deep saline aquifer , 2014 .

[27]  Gregg Marland,et al.  Carbon dioxide emissions from fossil fuels: a procedure for estimation and results for 1950-1982 , 1984 .

[28]  B. Ataie‐Ashtiani,et al.  A Numerical Study of Micro-Heterogeneity Effects on Upscaled Properties of Two-Phase Flow in Porous Media , 2004 .

[29]  Denis M. O'Carroll,et al.  Experimental investigation of nonequilibrium capillarity effects: Fluid viscosity effects , 2011 .

[30]  Toby Aiken,et al.  Geological storage of CO2 in saline aquifers—A review of the experience from existing storage operations , 2010 .

[31]  L. Pyrak‐Nolte,et al.  Advances in the theory of capillarity in porous media , 2009 .

[32]  R. Farajzadeh Enhanced transport phenomena in CO2 sequestration and CO2 EOR , 2009 .

[33]  Karl H. Wolf,et al.  Comparative review , 2011, J. Documentation.

[34]  T. Fujii,et al.  Sorption Characteristics of CO 2 on Rocks and Minerals in Storing CO 2 Processes , 2010 .

[35]  S. Gasda Numerical models for evaluating CO2 storage in deep, saline aquifers: Leaky wells and large-scale geological features , 2010 .

[36]  H. Bertin,et al.  Brine/CO2 Interfacial Properties and Effects on CO2 Storage in Deep Saline Aquifers , 2010 .

[37]  Christine Doughty,et al.  Modeling geologic storage of carbon dioxide: Comparison of non-hysteretic and hysteretic characteristic curves , 2006 .

[38]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[39]  M. Piri,et al.  Wettability of supercritical carbon dioxide/water/quartz systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[40]  Jean-Luc Adam,et al.  Infrared monitoring of underground CO2 storage using chalcogenide glass fibers , 2009 .

[41]  Karl Dunbar Stephen,et al.  Multi-Stage Upscaling: Selection of Suitable Methods , 2005 .

[43]  Michael O. Schwartz,et al.  Modelling leakage and groundwater pollution in a hypothetical CO2 sequestration project , 2014 .

[44]  S. Hassanizadeh,et al.  From Local Measurements to an Upscaled Capillary Pressure–Saturation Curve , 2011 .

[45]  D. Das,et al.  Non-uniqueness in capillary pressure–saturation–relative permeability relationships for two-phase flow in porous media: Interplay between intensity and distribution of random micro-heterogeneities , 2006 .

[46]  Jong-Su Choi,et al.  CO2 storage in marine geological structure: A review of latest progress and its application in Korea , 2009 .

[47]  Shibo Wang,et al.  Wettability phenomena at the CO2-brine-mineral interface: implications for geologic carbon sequestration. , 2013, Environmental science & technology.

[48]  Ruben Juanes,et al.  Impact of relative permeability hysteresis on geological CO2 storage , 2006 .

[49]  Thomas L. Davis,et al.  Greenhouse gas sequestration in abandoned oil reservoirs: The International Energy Agency Weyburn pilot project , 2004 .

[50]  C. Tsakiroglou,et al.  The effect of micro-heterogeneity and capillary number on capillary pressure and relative permeability curves of soils , 2008 .

[51]  Karsten Pruess,et al.  TOUGHREACT - A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration , 2006, Comput. Geosci..

[52]  Andy Chadwick,et al.  Modelling carbon-dioxide accumulation at Sleipner: implications for underground carbon storage , 2007 .

[53]  G. Sivashinsky,et al.  Fingering instability in immiscible displacement. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Henry J. Ramey,et al.  Workshop on Geothermal Reservoir Engineering , 1976 .

[55]  Yilian Li,et al.  Numeric modeling of carbon dioxide sequestration in deep saline aquifers in Wangchang Oilfield-Jianghan Basin, China , 2010 .

[56]  S. Hassanizadeh,et al.  Upscaling Multiphase Flow in Porous Media , 2005 .

[57]  G. Topp,et al.  THE MEASUREMENT OF SOIL WATER CONTENT USING A PORTABLE TDR HAND PROBE , 1984 .

[58]  Chonghun Han,et al.  CO2 geological storage: A review on present and future prospects , 2011 .

[59]  Bjørn Kvamme,et al.  Measurements and modelling of interfacial tension for water + carbon dioxide systems at elevated pressures , 2007 .

[60]  J. Bruining,et al.  The influence of capillary pressure on the phase equilibrium of the CO2–water system: Application to carbon sequestration combined with geothermal energy , 2012 .

[61]  K. P. Saripalli,et al.  Modeling the Sequestration of CO 2 in Deep Geological Formations , 2001 .

[62]  David R. Cole,et al.  CO2 Sequestration in Deep Sedimentary Formations , 2008 .

[63]  Seyed Nezameddin Ashrafizadeh,et al.  Wettability determination by contact angle measurements: hvbB coal-water system with injection of synthetic flue gas and CO2. , 2011, Journal of colloid and interface science.

[64]  D. Dollimore,et al.  An improved method for the calculation of pore size distribution from adsorption data , 2007 .

[65]  J. R. Gillespie CAPILLARY PRESSURE , 1921 .

[66]  L. C. Drake Pore-Size Distribution in Porous Materials , 1949 .

[67]  Matteo Loizzo,et al.  CO2 Geological Storage , 2015 .

[68]  M. G. Salvadori,et al.  Numerical methods in engineering , 1955 .

[69]  Andreas Kopp,et al.  Monitoring of CO2 plumes during storage in geological formations using temperature signals: Numerical investigation , 2008 .

[70]  Geoffrey Till,et al.  Present and Future Prospects , 1989 .

[71]  E. Woods,et al.  Saturation Distribution and Injection Pressure for A Radial Gas-Storage Reservoir , 1962 .

[72]  Jay W. Grate,et al.  Influence of Viscous and Capillary Forces on Immiscible Fluid Displacement: Pore-Scale Experimental Study in a Water-Wet Micromodel Demonstrating Viscous and Capillary Fingering , 2011 .

[73]  S. Hassanizadeh,et al.  EXPERIMENTAL STUDY OF DYNAMIC CAPILLARY PRESSURE EFFECT IN TWO-PHASE FLOW IN POROUS MEDIA , 2006 .

[74]  Franklin M. Orr,et al.  Storage of CO2 in saline aquifers: Effects of gravity, viscous, and capillary forces on amount and timing of trapping , 2007 .

[75]  Djebbar Tiab,et al.  Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties , 1996 .

[76]  L. Stutzman,et al.  Carbon Dioxide Solubility in Water , 1956 .

[77]  T. Maraseni,et al.  An assessment of carbon sequestration potential of riparian zone of Condamine Catchment, Queensland, Australia , 2016 .

[78]  Victor Vilarrasa,et al.  Coupled hydromechanical modeling of CO2 sequestration in deep saline aquifers , 2010 .

[79]  Mark D. White,et al.  STOMP Subsurface Transport Over Multiple Phases Version 1.0 Addendum: ECKEChem Equilibrium-Conservation-Kinetic Equation Chemistry and Reactive Transport , 2005 .

[80]  M. Blunt,et al.  Measurements of the capillary trapping of super‐critical carbon dioxide in Berea sandstone , 2011 .

[81]  Cesar Zarcone,et al.  Numerical models and experiments on immiscible displacements in porous media , 1988, Journal of Fluid Mechanics.

[82]  R. Holt,et al.  Reservoir geomechanics , 2021, Developments in Petroleum Science.

[83]  J. Bruining,et al.  Capillary entrapment caused by small-scale wettability heterogeneities , 1996 .

[84]  Christopher H. Pentland,et al.  Measurements of non-wetting phase trapping in porous media , 2010 .

[85]  Stefan Bachu,et al.  Heartland Area Redwater reef saline aquifer CO2 storage project , 2009 .

[86]  Ian C. Bourg,et al.  Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage , 2012 .

[87]  Ray Leuning,et al.  Atmospheric monitoring and verification technologies for CO2 geosequestration , 2008 .

[88]  Fred J. Hickernell,et al.  Linear stability of immiscible displacement in porous media , 1989 .

[89]  Tae Wook Kim,et al.  Capillary pressure saturation relations supercritical CO2 and brine in sand: High-pressure Pc(Sw) controller/meter measurements and capillary scaling predictions , 2013 .

[90]  Julio E. Garcia Density of aqueous solutions of CO2 , 2001 .

[91]  Lixia Chen,et al.  Dynamic capillary effects in a small‐volume unsaturated porous medium: Implications of sensor response and gas pressure gradients for understanding system dependencies , 2012 .

[92]  Stephen P. White,et al.  Numerical Simulation of CO 2 Sequestration in Natural CO 2 Reservoirs on the Colorado Plateau , 2001 .

[93]  M. White,et al.  Numerical Investigations of Multifluid Hydrodynamics During Injection of Supercritical CO2 into Porous Media , 2003 .

[94]  Paul Zakkour,et al.  Permitting issues for CO2 capture, transport and geological storage: A review of Europe, USA, Canada and Australia , 2007 .

[95]  Yasamin Khazraii,et al.  Numerical modeling , 2019, Ground Penetrating Radar: Improving sensing and imaging through numerical modeling.

[96]  Vahid Joekar-Niasar,et al.  Effect of fluids properties on non-equilibrium capillarity effects: Dynamic pore-network modeling , 2011 .

[97]  J. Carlos Santamarina,et al.  Water‐CO2‐mineral systems: Interfacial tension, contact angle, and diffusion—Implications to CO2 geological storage , 2010 .

[98]  C. Aggelopoulos,et al.  CO2/CaCl2 solution interfacial tensions under CO2 geological storage conditions: Influence of cation valence on interfacial tension , 2010 .

[99]  C. Medaglia,et al.  A Numerical Study , 2005 .

[100]  L. H. Grimme,et al.  Working Group III , 2000 .

[101]  Jan M. Nordbotten,et al.  Interpretation of macroscale variables in Darcy's law , 2007 .

[102]  N. Seaton,et al.  A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements , 1989 .

[103]  T. Illangasekare,et al.  Experimental investigation of dynamic effects in capillary pressure: Grain size dependency and upscaling , 2010 .

[104]  Olaf Kolditz,et al.  Object‐oriented finite element analysis of thermo‐hydro‐mechanical (THM) problems in porous media , 2007 .

[105]  Rainer Helmig,et al.  Investigations on CO2 storage capacity in saline aquifers: Part 1. Dimensional analysis of flow processes and reservoir characteristics , 2009 .

[106]  Mazen M. Abu-Khader,et al.  Recent Progress in CO2 Capture/Sequestration: A Review , 2006 .

[107]  Joseph P. Morris,et al.  The large-scale geomechanical and hydrogeological effects of multiple CO2 injection sites on formation stability , 2011 .

[108]  R. H. Brooks,et al.  Hydraulic properties of porous media , 1963 .

[110]  Hamdi A. Tchelepi,et al.  Linear stability analysis of immiscible two-phase flow in porous media with capillary dispersion and density variation , 2004 .

[111]  Cornelia Schmidt-Hattenberger,et al.  Reservoir geomechanics for assessing containment in CO2 storage: A case study at Ketzin, Germany , 2011 .

[112]  L. Gournay,et al.  Pore Size Distribution of Petroleum Reservoir Rocks , 1950 .

[113]  Torkjell Stenvold,et al.  Monitoring gas production and CO2 injection at the Sleipner field using time-lapse gravimetry , 2008 .

[114]  G. Lei,et al.  Dynamic effect of capillary pressure in low permeability reservoirs , 2012 .

[115]  Stefan Bachu,et al.  Drainage and Imbibition Relative Permeability Relationships for Supercritical CO2/Brine and H2S/Brine Systems in Intergranular Sandstone, Carbonate, Shale, and Anhydrite Rocks , 2008 .

[116]  J. C. Santamarina,et al.  CO2 geological storage — Geotechnical implications , 2011 .

[117]  I. Gaus,et al.  Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea) , 2005 .

[118]  Svein M. Skjaeveland,et al.  Steady-State Relative Permeability Measurements Corrected for Capillary Effects , 1995 .

[119]  A. Chacuk,et al.  Numerical simulation of CO2 absorption into aqueous methyldiethanolamine solutions , 2012, Korean Journal of Chemical Engineering.

[120]  P. Meurs The Use of Transparent Three-Dimensional Models for Studying the Mechanism of Flow Processes in Oil Reservoirs , 1957 .

[121]  W. Zisman,et al.  CONSTITUTIVE RELATIONS IN THE WETTING OF LOW ENERGY SURFACES AND THE THEORY OF THE RETRACTION METHOD OF PREPARING MONOLAYERS1 , 1960 .

[122]  Jan M. Nordbotten,et al.  Injection and Storage of CO2 in Deep Saline Aquifers: Analytical Solution for CO2 Plume Evolution During Injection , 2005 .

[123]  Timo J. Heimovaara,et al.  Nonequilibrium capillarity effects in two‐phase flow through porous media at different scales , 2011 .

[124]  Erlend Magnus Viggen,et al.  The Lattice Boltzmann Method , 2017 .

[125]  Tesis Doctoral,et al.  NONISOTHERMAL MULTIPHASE FLOW OF BRINE AND GAS THROUGH SALINE MEDIA , 2009 .

[126]  B. R. Stanmore,et al.  Review—calcination and carbonation of limestone during thermal cycling for CO2 sequestration , 2005 .

[127]  N. T. Burdine Relative Permeability Calculations From Pore Size Distribution Data , 1953 .

[128]  T. Ishido,et al.  CO2 Geological Storage , 2015 .

[129]  Navraj Hanspal,et al.  Dynamic effects on capillary pressure–Saturation relationships for two‐phase porous flow: Implications of temperature , 2012 .

[130]  Q. Tao,et al.  Well permeability estimation and CO2 leakage rates , 2014 .

[131]  L. C. Drake,et al.  Pressure Porosimeter and Determination of Complete Macropore-Size Distributions. Pressure Porosimeter and Determination of Complete Macropore-Size Distributions , 1945 .

[132]  K. Pruess,et al.  TOUGH2 User's Guide Version 2 , 1999 .

[133]  G. Zyvoloski,et al.  A numerical model for thermo-hydro-mechanical coupling in fractured rock , 1997 .

[134]  Norman R. Morrow,et al.  Capillary Equilibrium in Porous Materials , 1965 .

[135]  Andy Chadwick,et al.  Best practice for the storage of CO2 in saline aquifers - observations and guidelines from the SACS and CO2STORE projects , 2008 .

[136]  Jonny Rutqvist,et al.  Code Intercomparison Builds Confidence in Numerical Models for Geologic Disposal of CO2 , 2003 .

[137]  Pierre Chiquet,et al.  Wettability alteration of caprock minerals by carbon dioxide , 2007 .

[138]  T. Fujii,et al.  Sorption Characteristics of CO2 on Rocks and Minerals in Storing CO2 Processes , 2010 .

[139]  Laurent Trenty,et al.  A benchmark study on problems related to CO2 storage in geologic formations , 2009 .

[140]  N. Müller Supercritical CO2-Brine Relative Permeability Experiments in Reservoir Rocks—Literature Review and Recommendations , 2011 .

[141]  William Foxall,et al.  In salah CO2 storage JIP: hydromechanical simulations of surface uplift due to CO2 injection at in salah , 2011 .

[142]  D. Das,et al.  Experimental measurement of dynamic effect in capillary pressure relationship for two‐phase flow in weakly layered porous media , 2013 .

[143]  M. Kühn,et al.  Numerical Modeling of a Potential Geological CO2 Sequestration Site at Minden (Germany) , 2012, Environmental Modeling & Assessment.

[144]  R. Horne,et al.  THE SIGNIFICANCE OF CO 2 SOLUBILITY IN GEOTHERMAL RESERVOIRS , 2011 .

[145]  Gudmundur S. Bodvarsson,et al.  A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock , 2002 .

[146]  J. Drever,et al.  The role of organic acids in mineral weathering , 1997 .

[147]  S. Emmanuel,et al.  Interfacial energy effects and the evolution of pore size distributions during quartz precipitation in sandstone , 2010 .

[148]  Richard D. Alexander,et al.  A Comparative Review , 1968 .

[149]  D. Das,et al.  Dynamic effects for two-phase flow in porous media: Fluid property effects , 2007 .

[150]  B. N. Whittaker,et al.  Relative permeability measurements for two phase flow in unconsolidated sands , 1992 .

[151]  P. Audigane,et al.  Modeling of CO2 Leakage up Through an Abandoned Well from Deep Saline Aquifer to Shallow Fresh Groundwaters , 2011 .

[152]  Diganta Bhusan Das,et al.  Experimental investigation of hysteretic dynamic effect in capillary pressure–saturation relationship for two‐phase flow in porous media , 2013 .

[153]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[154]  Jonny Rutqvist,et al.  The Geomechanics of CO2 Storage in Deep Sedimentary Formations , 2012, Geotechnical and Geological Engineering.

[155]  B. Chun,et al.  Interfacial tension in high-pressure carbon dioxide mixtures , 1995 .

[156]  Jan M. Nordbotten,et al.  On the definition of macroscale pressure for multiphase flow in porous media , 2008 .

[157]  J. Bruining,et al.  Capillary pressure for the sand–CO2–water system under various pressure conditions. Application to CO2 sequestration , 2007 .

[158]  M. Celia,et al.  Bundle-of-Tubes Model for Calculating Dynamic Effects in the Capillary-Pressure- Saturation Relationship , 2005 .

[159]  W. Anderson Wettability literature survey - Part 5: The effects of wettability on relative permeability , 1987 .

[160]  Jonny Rutqvist,et al.  A comparative review of hydrologic issues involved in geologic storage of CO2 and injection disposal of liquid waste , 2008 .

[161]  G. Taylor,et al.  The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[162]  Sally M. Benson,et al.  A Model of Buoyancy-Driven Two-Phase Countercurrent Fluid Flow , 2008 .

[163]  Zhenhao Duan,et al.  An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar , 2003 .

[164]  Xiaochun Li,et al.  Experimental study of crossover from capillary to viscous fingering for supercritical CO2-water displacement in a homogeneous pore network. , 2013, Environmental science & technology.

[165]  Gabriel A. Wainer,et al.  Discrete Modeling and Simulation [Guest editors' introduction] , 2016, Comput. Sci. Eng..

[166]  K. Wolf,et al.  Interfacial Tension and Contact Angle Determination in Water-sandstone Systems with Injection of Flue Gas and CO2 , 2013 .

[167]  Jonny Rutqvist,et al.  Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations , 2011, Comput. Geosci..