A Linear Round Lower Bound for Lovasz-Schrijver SDP Relaxations of Vertex Cover
暂无分享,去创建一个
Madhur Tulsiani | Luca Trevisan | Grant Schoenebeck | L. Trevisan | G. Schoenebeck | Madhur Tulsiani
[1] Uriel Feige,et al. Random 3CNF formulas elude the Lovasz theta function , 2006, Electron. Colloquium Comput. Complex..
[2] Toniann Pitassi,et al. Rank Bounds and Integrality Gaps for Cutting Planes Procedures , 2006, Theory Comput..
[3] Kenji Obata,et al. A lower bound for testing 3-colorability in bounded-degree graphs , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..
[4] Jon M. Kleinberg,et al. The Lovász Theta Function and a Semidefinite Programming Relaxation of Vertex Cover , 1998, SIAM J. Discret. Math..
[5] Iannis Tourlakis,et al. New Lower Bounds for Vertex Cover in the Lovasz-Schrijver Hierarchy , 2006, 21st Annual IEEE Conference on Computational Complexity (CCC'06).
[6] Moses Charikar,et al. On semidefinite programming relaxations for graph coloring and vertex cover , 2002, SODA '02.
[7] Michael Alekhnovich,et al. Towards strong nonapproximability results in the Lovasz-Schrijver hierarchy , 2005, STOC.
[8] Béla Bollobás,et al. Proving integrality gaps without knowing the linear program , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..
[9] Eli Ben-Sasson,et al. Short proofs are narrow—resolution made simple , 2001, JACM.
[10] Toniann Pitassi,et al. Rank bounds and integrality gaps for cutting planes procedures , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..
[11] Alexander Schrijver,et al. Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..