Loopy proteins appear conserved in evolution.

[1]  C. A. Andersen,et al.  Continuum secondary structure captures protein flexibility. , 2002, Structure.

[2]  Ioannis Xenarios,et al.  DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions , 2002, Nucleic Acids Res..

[3]  Marc A. Martí-Renom,et al.  EVA: continuous automatic evaluation of protein structure prediction servers , 2001, Bioinform..

[4]  C. Zetina,et al.  A conserved helix‐unfolding motif in the naturally unfolded proteins , 2001, Proteins.

[5]  Zoran Obradovic,et al.  The protein trinity—linking function and disorder , 2001, Nature Biotechnology.

[6]  A. McDermott,et al.  The time scale of the catalytic loop motion in triosephosphate isomerase. , 2001, Journal of molecular biology.

[7]  L. Tong,et al.  Solution-state NMR investigations of triosephosphate isomerase active site loop motion: ligand release in relation to active site loop dynamics. , 2001, Journal of molecular biology.

[8]  S. Cusack,et al.  A succession of substrate induced conformational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthetase: comparison with histidyl-tRNA synthetase. , 2001, Journal of molecular biology.

[9]  H. Hayashi,et al.  Structures of Escherichia coli branched-chain amino acid aminotransferase and its complexes with 4-methylvalerate and 2-methylleucine: induced fit and substrate recognition of the enzyme. , 2001, Biochemistry.

[10]  M. Fisher,et al.  Structural changes in GroEL effected by binding a denatured protein substrate. , 2001, Journal of molecular biology.

[11]  Thomas Lengauer,et al.  FlexE: efficient molecular docking considering protein structure variations. , 2001, Journal of molecular biology.

[12]  Annabel E. Todd,et al.  Evolution of function in protein superfamilies, from a structural perspective. , 2001, Journal of molecular biology.

[13]  M. Weiss,et al.  Floppy SOX: mutual induced fit in hmg (high-mobility group) box-DNA recognition. , 2001, Molecular endocrinology.

[14]  J. Whisstock,et al.  Protein structural alignments and functional genomics , 2001, Proteins.

[15]  S. Jones,et al.  Protein-RNA interactions: a structural analysis. , 2001, Nucleic acids research.

[16]  J Thornton,et al.  Structural genomics takes off. , 2001, Trends in biochemical sciences.

[17]  J. Wojcik,et al.  The protein–protein interaction map of Helicobacter pylori , 2001, Nature.

[18]  K. Namba Roles of partly unfolded conformations in macromolecular self‐assembly , 2001, Genes to cells : devoted to molecular & cellular mechanisms.

[19]  Michael Y. Galperin,et al.  The COG database: new developments in phylogenetic classification of proteins from complete genomes , 2001, Nucleic Acids Res..

[20]  Christopher J. Oldfield,et al.  Intrinsically disordered protein. , 2001, Journal of molecular graphics & modelling.

[21]  P. Romero,et al.  Sequence complexity of disordered protein , 2001, Proteins.

[22]  V. Uversky,et al.  Why are “natively unfolded” proteins unstructured under physiologic conditions? , 2000, Proteins.

[23]  L. Serrano,et al.  Towards understanding a molecular switch mechanism: thermodynamic and crystallographic studies of the signal transduction protein CheY. , 2000, Journal of molecular biology.

[24]  A. Valencia,et al.  Practical limits of function prediction , 2000, Proteins.

[25]  M. Aigle,et al.  A network of proteins around Rvs167p and Rvs161p, two proteins related to the yeast actin cytoskeleton , 2000, Yeast.

[26]  Ian Dix,et al.  Yeast Yeast 2000; 17: 95±110. Research Article , 2000 .

[27]  T L Blundell,et al.  Structural genomics: an overview. , 2000, Progress in biophysics and molecular biology.

[28]  J Moult,et al.  From fold to function. , 2000, Current opinion in structural biology.

[29]  M S Chapman,et al.  Induced fit in arginine kinase. , 2000, Biophysical journal.

[30]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[31]  L. Shapiro,et al.  Finding function through structural genomics. , 2000, Current opinion in biotechnology.

[32]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[33]  Rolf Apweiler,et al.  The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000 , 2000, Nucleic Acids Res..

[34]  H. Dyson,et al.  Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. , 1999, Journal of molecular biology.

[35]  A. Sali,et al.  Structural genomics: beyond the Human Genome Project , 1999, Nature Genetics.

[36]  John E. Johnson,et al.  The crystal structure of cricket paralysis virus: the first view of a new virus family , 1999, Nature Structural Biology.

[37]  P. Thuriaux,et al.  A protein-protein interaction map of yeast RNA polymerase III. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A Valencia,et al.  Model of the ran-RCC1 interaction using biochemical and docking experiments. , 1999, Journal of molecular biology.

[39]  H M Berman,et al.  Protein-DNA interactions: A structural analysis. , 1999, Journal of molecular biology.

[40]  A. Volbeda,et al.  Crystal structures of the key anaerobic enzyme pyruvate:ferredoxin oxidoreductase, free and in complex with pyruvate , 1999, Nature Structural Biology.

[41]  B. Rost Twilight zone of protein sequence alignments. , 1999, Protein engineering.

[42]  W. Hendrickson,et al.  Mechanisms by which IkappaB proteins control NF-kappaB activity. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Malin M. Young,et al.  Predicting conformational switches in proteins , 1999, Protein science : a publication of the Protein Society.

[44]  Malin M. Young,et al.  Predicting allosteric switches in myosins , 1999, Protein science : a publication of the Protein Society.

[45]  C. Dobson,et al.  Sequence does specify protein conformation. , 1998, Trends in biochemical sciences.

[46]  A. Sali 100,000 protein structures for the biologist , 1998, Nature Structural Biology.

[47]  Y. Matsuura,et al.  Three-dimensional structure of Pseudomonas isoamylase at 2.2 A resolution. , 1998, Journal of molecular biology.

[48]  R. Russell,et al.  Detection of protein three-dimensional side-chain patterns: new examples of convergent evolution. , 1998, Journal of molecular biology.

[49]  Peter D. Kwong,et al.  The antigenic structure of the HIV gp120 envelope glycoprotein , 1998, Nature.

[50]  T Gaasterland,et al.  Structural genomics taking shape. , 1998, Trends in genetics : TIG.

[51]  B. Rost,et al.  Marrying structure and genomics. , 1998, Structure.

[52]  W. Gronwald,et al.  The solution structure of type II antifreeze protein reveals a new member of the lectin family. , 1998, Biochemistry.

[53]  N. Unwin The Nicotinic Acetylcholine Receptor of theTorpedoElectric Ray , 1998 .

[54]  N. Unwin The nicotinic acetylcholine receptor of the Torpedo electric ray. , 1998, Journal of structural biology.

[55]  Chris Sander,et al.  EUCLID: automatic classification of proteins in functional classes by their database annotations , 1998, Bioinform..

[56]  A K Dunker,et al.  Thousands of proteins likely to have long disordered regions. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[57]  A K Dunker,et al.  Protein disorder and the evolution of molecular recognition: theory, predictions and observations. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[58]  Obradovic,et al.  Predicting Disordered Regions from Amino Acid Sequence: Common Themes Despite Differing Structural Characterization. , 1998, Genome informatics. Workshop on Genome Informatics.

[59]  M Nilges,et al.  Functional diversity of PH domains: an exhaustive modelling study. , 1997, Folding & design.

[60]  Gary D. Stormo,et al.  Displaying the information contents of structural RNA alignments: the structure logos , 1997, Comput. Appl. Biosci..

[61]  J. Thornton,et al.  Tess: A geometric hashing algorithm for deriving 3D coordinate templates for searching structural databases. Application to enzyme active sites , 1997, Protein science : a publication of the Protein Society.

[62]  C. Lima,et al.  Structure-based analysis of catalysis and substrate definition in the HIT protein family. , 1997, Science.

[63]  J. Noel Turning off the Ras switch with the flick of a finger , 1997, Nature Structural Biology.

[64]  W. Taylor,et al.  Multiple sequence threading: an analysis of alignment quality and stability. , 1997, Journal of molecular biology.

[65]  M. Riley,et al.  Protein evolution viewed through Escherichia coli protein sequences: introducing the notion of a structural segment of homology, the module. , 1997, Journal of molecular biology.

[66]  V. Gladyshev,et al.  Crystal Structure of Formate Dehydrogenase H: Catalysis Involving Mo, Molybdopterin, Selenocysteine, and an Fe4S4 Cluster , 1997, Science.

[67]  R. Solano,et al.  A Single Residue Substitution Causes a Switch from the Dual DNA Binding Specificity of Plant Transcription Factor MYB.Ph3 to the Animal c-MYB Specificity* , 1997, The Journal of Biological Chemistry.

[68]  S. Brunak,et al.  SHORT COMMUNICATION Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites , 1997 .

[69]  N Lotan,et al.  A molecular switch for biochemical logic gates: conformational studies. , 1997, Biosensors & bioelectronics.

[70]  Rolf Apweiler,et al.  The SWISS-PROT protein sequence data bank and its supplement TrEMBL , 1997, Nucleic Acids Res..

[71]  M. S. Chapman,et al.  Canine parvovirus capsid structure, analyzed at 2.9 A resolution. , 1996, Journal of molecular biology.

[72]  K. Browning,et al.  pH-dependent and ligand induced conformational changes of eucaryotic protein synthesis initiation factor eIF-(iso)4F: a circular dichroism study. , 1996, Biochimica et biophysica acta.

[73]  B. Rost,et al.  Topology prediction for helical transmembrane proteins at 86% accuracy–Topology prediction at 86% accuracy , 1996, Protein science : a publication of the Protein Society.

[74]  C Ouzounis,et al.  Genomes with distinct function composition , 1996, FEBS letters.

[75]  A G Murzin,et al.  Structural classification of proteins: new superfamilies. , 1996, Current opinion in structural biology.

[76]  J. Wootton,et al.  Analysis of compositionally biased regions in sequence databases. , 1996, Methods in enzymology.

[77]  A. Lupas Prediction and analysis of coiled-coil structures. , 1996, Methods in enzymology.

[78]  T. Gibson,et al.  Applying motif and profile searches. , 1996, Methods in enzymology.

[79]  Anna Tempczyk,et al.  Crystal structures of human calcineurin and the human FKBP12–FK506–calcineurin complex , 1995, Nature.

[80]  S. Meri,et al.  Extracellular domain of type I receptor for transforming growth factor‐β: molecular modelling using protectin (CD59) as a template , 1995, FEBS letters.

[81]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[82]  T. Poulos,et al.  The crystal structure of chloroperoxidase: a heme peroxidase--cytochrome P450 functional hybrid. , 1995, Structure.

[83]  P. Bayer,et al.  Structural studies of HIV-1 Tat protein. , 1995, Journal of molecular biology.

[84]  A. Monzingo,et al.  The refined crystal structure of an endochitinase from Hordeum vulgare L. seeds at 1.8 A resolution. , 1995, Journal of molecular biology.

[85]  B. Rost,et al.  Conservation and prediction of solvent accessibility in protein families , 1994, Proteins.

[86]  R. M. Burnett,et al.  The refined crystal structure of hexon, the major coat protein of adenovirus type 2, at 2.9 A resolution. , 1994, Journal of molecular biology.

[87]  G. Wagner,et al.  Structure of the RGD protein decorsin: conserved motif and distinct function in leech proteins that affect blood clotting. , 1994, Science.

[88]  M. Vihinen,et al.  Accuracy of protein flexibility predictions , 1994, Proteins.

[89]  B. Rost,et al.  Combining evolutionary information and neural networks to predict protein secondary structure , 1994, Proteins.

[90]  M. Riley,et al.  Functions of the gene products of Escherichia coli , 1993, Microbiological reviews.

[91]  B. Rost,et al.  Prediction of protein secondary structure at better than 70% accuracy. , 1993, Journal of molecular biology.

[92]  C. Sander,et al.  How does the switch II region of G‐domains work? , 1993, FEBS letters.

[93]  F A Quiocho,et al.  Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. , 1992, Science.

[94]  P. Argos,et al.  Analysis of insertions/deletions in protein structures. , 1992, Journal of molecular biology.

[95]  M. Perutz Introductory lecture: what are enzyme structures telling us? , 1992 .

[96]  What are enzyme structures telling us? , 1992, Faraday discussions.

[97]  I. Trowbridge,et al.  Endocytosis and signals for internalization. , 1991, Current opinion in cell biology.

[98]  C. Sander,et al.  Database of homology‐derived protein structures and the structural meaning of sequence alignment , 1991, Proteins.

[99]  W. Lipscomb,et al.  Crystal structure of the complex of carboxypeptidase A with a strongly bound phosphonate in a new crystalline form: comparison with structures of other complexes. , 1990, Biochemistry.

[100]  M. Rossmann,et al.  The active center of catalase. , 1985, Journal of molecular biology.

[101]  M G Rossmann,et al.  The NADPH binding site on beef liver catalase. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[102]  C. Klee,et al.  Calcineurin: A Member of a Family of Calmodulin-Stimulated Protein Phosphatases , 1984, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[103]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[104]  C. Klee,et al.  Activation of calcineurin by limited proteolysis. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[105]  H. Scheraga,et al.  Experimental and theoretical aspects of protein folding. , 1975, Advances in protein chemistry.

[106]  C. Anfinsen Principles that govern the folding of protein chains. , 1973, Science.