Proofs of three conjectures on the quotients of the (revised) Szeged index and the Wiener index and beyond

Let W ( G ) , S z ( G ) and S z ź ( G ) be the Wiener index, Szeged index and revised Szeged index of a connected graph G , respectively. Call L n , r a lollipop if it is obtained by identifying a vertex of C r with an end-vertex of P n - r + 1 . For a connected unicyclic graph G with n ź 4 vertices, Hansen et al.ź(2010) conjectured: (A) S z ( G ) W ( G ) ź 2 - 8 n 2 + 7 , ifź n źisźodd, 2 , ifź n źisźeven, (B) S z ź ( G ) W ( G ) ź 1 + 3 ( n 2 + 4 n - 6 ) 2 ( n 3 - 7 n + 12 ) , ifź n ź 9 , 1 + 24 ( n - 2 ) n 3 - 13 n + 36 , ifź n ź 10 , (C) S z ź ( G ) W ( G ) ź 2 + 2 n 2 - 1 , ifź n źisźodd, 2 , ifź n źisźeven, where the equality in (A) holds if and only if G is the lollipop L n , n - 1 if n is odd, and the cycle C n if n is even; the equality in (B) holds if and only if G is the lollipop L n , 3 if n ź 9 , and L n , 4 if n ź 10 , whereas the equality in (C) holds if and only if G is the cycle C n . In this paper, we not only confirm these conjectures but also determine the lower bound of S z ź ( G ) ź W ( G ) (resp. S z ( G ) ź W ( G ) ) for cyclic graphs G . The extremal graphs that achieve these lower bounds are characterized.

[1]  Xueliang Li,et al.  Bicyclic graphs with maximal revised Szeged index , 2013, Discret. Appl. Math..

[2]  Shuchao Li,et al.  On the sum of all distances in bipartite graphs , 2014, Discret. Appl. Math..

[3]  I. Gutman,et al.  Mathematical Concepts in Organic Chemistry , 1986 .

[4]  Sandi Klavžar,et al.  The Szeged and the Wiener Index of Graphs , 1996 .

[5]  Xueliang Li,et al.  The (revised) Szeged index and the Wiener index of a nonbipartite graph , 2014, Eur. J. Comb..

[6]  Hanyuan Deng,et al.  The (n,n)-graphs with the first three extremal Wiener indices , 2008 .

[7]  Ortrud R. Oellermann,et al.  Distance in Graphs , 2011, Structural Analysis of Complex Networks.

[9]  Sandi Klavzar,et al.  On the difference between the revised Szeged index and the Wiener index , 2014, Discret. Math..

[10]  Ali Reza Ashrafi,et al.  Graphs whose Szeged and Wiener numbers differ by 4 and 5 , 2012, Math. Comput. Model..

[11]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[12]  Ali Reza Ashrafi,et al.  On the differences between Szeged and Wiener indices of graphs , 2011, Discret. Math..

[13]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[14]  A. R. ASHRAFI,et al.  A NEW PROOF OF THE SZEGED – WIENER THEOREM , 2011 .

[15]  Mustapha Aouchiche,et al.  AutoGraphiX: a survey , 2005, Electron. Notes Discret. Math..

[16]  Xueliang Li,et al.  On a relation between Szeged and Wiener indices of bipartite graphs , 2012 .

[17]  Sandi Klavzar,et al.  Wiener index versus Szeged index in networks , 2013, Discret. Appl. Math..

[18]  Tomaz Pisanski,et al.  Use of the Szeged index and the revised Szeged index for measuring network bipartivity , 2010, Discret. Appl. Math..

[19]  Shuchao Li,et al.  On the further relation between the (revised) Szeged index and the Wiener index of graphs , 2016, Discret. Appl. Math..

[20]  Mustapha Aouchiche,et al.  On a conjecture about the Szeged index , 2010, Eur. J. Comb..

[21]  Milan Randić On generalization of wiener index for cyclic structures , 2002 .

[22]  Zhibin Du,et al.  On AGX Conjectures Regarding Average Eccentricity , 2013 .

[23]  Tomaz Pisanski,et al.  Edge-contributions of some topological indices and arboreality of molecular graphs , 2009, Ars Math. Contemp..

[24]  I. Gutman,et al.  Wiener Index of Trees: Theory and Applications , 2001 .

[25]  P. Hansen,et al.  Variable Neighborhood Search for Extremal Graphs. 15. On Bags and Bugs , 2005 .

[26]  Pierre Hansen,et al.  Variable Neighborhood Search for Extremal Graphs: IV: Chemical Trees with Extremal Connectivity Index , 1998, Comput. Chem..

[27]  Aleksandar Ilic,et al.  Note on PI and Szeged indices , 2010, Math. Comput. Model..

[28]  Sandi Klavzar,et al.  Improved bounds on the difference between the Szeged index and the Wiener index of graphs , 2014, Eur. J. Comb..

[29]  Bo Zhou,et al.  On the revised Szeged index , 2011, Discret. Appl. Math..

[30]  Pierre Hansen,et al.  Variable neighborhood search for extremal graphs: 1 The AutoGraphiX system , 1997, Discret. Math..